Farkhonde Karimi, Nima Montazeri-Najafabady, Fatemeh Mohammadi, Amir Azadi, Farhad Koohpeyma, Ahmad Gholami
{"title":"创新益生菌制剂用于局部治疗糖尿病溃疡的潜在治疗策略:一项体内研究。","authors":"Farkhonde Karimi, Nima Montazeri-Najafabady, Fatemeh Mohammadi, Amir Azadi, Farhad Koohpeyma, Ahmad Gholami","doi":"10.1038/s41387-024-00320-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The probiotic potential of Lacticacid bacteria has been studied in various medical complications, from gastrointestinal diseases to antibiotic resistance infections recently. Moreover, diabetic ulcer (DU) is known as one of the most significant global healthcare concerns, which comprehensively impacts the quality of life for these patients. Given that the conventional treatments of DUs have failed to prevent later complications completely, developing alternative therapies seems to be crucial.</p><p><strong>Methods: </strong>We designed the stable oleogel-based formulation of viable probiotic cells, including Lactobacillus rhamnosus (L. rhamnosus), Lactobacillus casei (L. casei), Lactobacillus fermentum (L. fermentum), and Lactobacillus acidophilus (L. acidophilus) individually to investigate their effect on wound healing process as an in vivo study. The wound repair process was closely monitored regarding morphology, biochemical, and histopathological changes over two weeks and compared it with the effects of topical tetracycline as an antibiotic approach. Furthermore, the antibiofilm activity of probiotic bacteria was assessed against some common pathogens.</p><p><strong>Results: </strong>The findings indicated that all tested lactobacillus groups (excluded L. casei) included in the oleogel-based formulation revealed a high potential for repairing damaged skin due to the considerably more levels of hydroxyproline content of tissue samples along with the higher numerical density of mature fibroblasts cell and volume density of hair follicles, collagen fibrils, and neovascularization in comparison with antibiotic and control groups. L. acidophilus and L. rhamnosus showed the best potential of wound healing among all lactobacillus species, groups treated by tetracycline and control groups. Besides, L. rhamnosus showed a significant biofilm inhibition activity against tested pathogens.</p><p><strong>Conclusions: </strong>This experiment demonstrated that the designed formulations containing probiotics, particularly L. acidophilus and L. rhamnosus, play a central role in manipulating diabetic wound healing. It could be suggested as an encouraging nominee for diabetic wound-healing alternative approaches, though further studies in detailed clinical trials are needed.</p>","PeriodicalId":19339,"journal":{"name":"Nutrition & Diabetes","volume":"14 1","pages":"66"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335896/pdf/","citationCount":"0","resultStr":"{\"title\":\"A potential therapeutic strategy of an innovative probiotic formulation toward topical treatment of diabetic ulcer: an in vivo study.\",\"authors\":\"Farkhonde Karimi, Nima Montazeri-Najafabady, Fatemeh Mohammadi, Amir Azadi, Farhad Koohpeyma, Ahmad Gholami\",\"doi\":\"10.1038/s41387-024-00320-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The probiotic potential of Lacticacid bacteria has been studied in various medical complications, from gastrointestinal diseases to antibiotic resistance infections recently. Moreover, diabetic ulcer (DU) is known as one of the most significant global healthcare concerns, which comprehensively impacts the quality of life for these patients. Given that the conventional treatments of DUs have failed to prevent later complications completely, developing alternative therapies seems to be crucial.</p><p><strong>Methods: </strong>We designed the stable oleogel-based formulation of viable probiotic cells, including Lactobacillus rhamnosus (L. rhamnosus), Lactobacillus casei (L. casei), Lactobacillus fermentum (L. fermentum), and Lactobacillus acidophilus (L. acidophilus) individually to investigate their effect on wound healing process as an in vivo study. The wound repair process was closely monitored regarding morphology, biochemical, and histopathological changes over two weeks and compared it with the effects of topical tetracycline as an antibiotic approach. Furthermore, the antibiofilm activity of probiotic bacteria was assessed against some common pathogens.</p><p><strong>Results: </strong>The findings indicated that all tested lactobacillus groups (excluded L. casei) included in the oleogel-based formulation revealed a high potential for repairing damaged skin due to the considerably more levels of hydroxyproline content of tissue samples along with the higher numerical density of mature fibroblasts cell and volume density of hair follicles, collagen fibrils, and neovascularization in comparison with antibiotic and control groups. L. acidophilus and L. rhamnosus showed the best potential of wound healing among all lactobacillus species, groups treated by tetracycline and control groups. Besides, L. rhamnosus showed a significant biofilm inhibition activity against tested pathogens.</p><p><strong>Conclusions: </strong>This experiment demonstrated that the designed formulations containing probiotics, particularly L. acidophilus and L. rhamnosus, play a central role in manipulating diabetic wound healing. It could be suggested as an encouraging nominee for diabetic wound-healing alternative approaches, though further studies in detailed clinical trials are needed.</p>\",\"PeriodicalId\":19339,\"journal\":{\"name\":\"Nutrition & Diabetes\",\"volume\":\"14 1\",\"pages\":\"66\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335896/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nutrition & Diabetes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41387-024-00320-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition & Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41387-024-00320-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
A potential therapeutic strategy of an innovative probiotic formulation toward topical treatment of diabetic ulcer: an in vivo study.
Background: The probiotic potential of Lacticacid bacteria has been studied in various medical complications, from gastrointestinal diseases to antibiotic resistance infections recently. Moreover, diabetic ulcer (DU) is known as one of the most significant global healthcare concerns, which comprehensively impacts the quality of life for these patients. Given that the conventional treatments of DUs have failed to prevent later complications completely, developing alternative therapies seems to be crucial.
Methods: We designed the stable oleogel-based formulation of viable probiotic cells, including Lactobacillus rhamnosus (L. rhamnosus), Lactobacillus casei (L. casei), Lactobacillus fermentum (L. fermentum), and Lactobacillus acidophilus (L. acidophilus) individually to investigate their effect on wound healing process as an in vivo study. The wound repair process was closely monitored regarding morphology, biochemical, and histopathological changes over two weeks and compared it with the effects of topical tetracycline as an antibiotic approach. Furthermore, the antibiofilm activity of probiotic bacteria was assessed against some common pathogens.
Results: The findings indicated that all tested lactobacillus groups (excluded L. casei) included in the oleogel-based formulation revealed a high potential for repairing damaged skin due to the considerably more levels of hydroxyproline content of tissue samples along with the higher numerical density of mature fibroblasts cell and volume density of hair follicles, collagen fibrils, and neovascularization in comparison with antibiotic and control groups. L. acidophilus and L. rhamnosus showed the best potential of wound healing among all lactobacillus species, groups treated by tetracycline and control groups. Besides, L. rhamnosus showed a significant biofilm inhibition activity against tested pathogens.
Conclusions: This experiment demonstrated that the designed formulations containing probiotics, particularly L. acidophilus and L. rhamnosus, play a central role in manipulating diabetic wound healing. It could be suggested as an encouraging nominee for diabetic wound-healing alternative approaches, though further studies in detailed clinical trials are needed.
期刊介绍:
Nutrition & Diabetes is a peer-reviewed, online, open access journal bringing to the fore outstanding research in the areas of nutrition and chronic disease, including diabetes, from the molecular to the population level.