中国某三甲医院广泛耐药卡巴培南肺炎克雷伯菌株的消毒剂耐药基因及对常用消毒剂的敏感性测定

IF 2.3 4区 医学 Q3 INFECTIOUS DISEASES
Microbial drug resistance Pub Date : 2024-10-01 Epub Date: 2024-08-21 DOI:10.1089/mdr.2024.0089
Kexin Zhao, Liang Wang, Jinglan Deng, Qiuxia Zuo, Maimaiti Adila, Xiao Wang, Zhe Dai, Ping Tian
{"title":"中国某三甲医院广泛耐药卡巴培南肺炎克雷伯菌株的消毒剂耐药基因及对常用消毒剂的敏感性测定","authors":"Kexin Zhao, Liang Wang, Jinglan Deng, Qiuxia Zuo, Maimaiti Adila, Xiao Wang, Zhe Dai, Ping Tian","doi":"10.1089/mdr.2024.0089","DOIUrl":null,"url":null,"abstract":"<p><p>Carbapenem-resistant <i>Klebsiella pneumoniae</i> (CRKP) infection has become a significant threat to global health. The application of chemical disinfectants is an effective infection control strategy to prevent the spread of CRKP in hospital environments. However, bacteria have shown reduced sensitivity to clinical disinfectants in recent years. Furthermore, bacteria can acquire antibiotic resistance due to the induction of disinfectants, posing a considerable challenge to hospital infection prevention and control. This study collected 68 CRKP strains from the Fifth Affiliated Hospital of Xinjiang Medical University in China from 2023 to 2024. These strains were isolated from the sputum, urine, and whole blood samples of patients diagnosed with CRKP infection. Antibiotic susceptibility tests were performed on CRKP strains. Concurrently, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of disinfectants (benzalkonium bromide, 1% iodophor disinfectant, alcohol, and chlorine-containing disinfectant) against the test isolates were determined by the broth microdilution method. The efflux pump genes (cepA, qacE, qacEΔ1, qacEΔ1-SUL1, oqxA, and oqxB) were detected using polymerase chain reaction. The results showed that 21 out of the 68 CRKP strains exhibited extensive drug resistance, whereas 47 were nonextensively drug-resistant. The MIC value for benzalkonium bromide disinfectants displayed statistically significant differences (<i>p</i> < 0.05) between extensively drug-resistant (XDR) and non-XDR strains. Additionally, the MBC values for benzalkonium bromide disinfectants and 1% iodophor disinfectants displayed statistically significant differences (<i>p</i> < 0.05) between XDR and non-XDR strains. The detection rates for the efflux pump genes were as follows: cepA 52.9%, qacE 39.7%, qacEΔ1 35.2%, qacEΔ1-SUL1 52.9%, oqxA 30.8%, and oqxB 32.3%. The detection rate of the qacEΔ1-SUL1 gene in XDR CRKP strains was significantly higher than in non-XDR CRKP strains (<i>p</i> < 0.05). This indicates a potential link between CRKP bacterial disinfectant efflux pump genes and CRKP bacterial resistance patterns. Ongoing monitoring of the declining sensitivity of XDR strains against disinfectants is essential for the effective control and prevention of superbug.</p>","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":" ","pages":"407-414"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining the Disinfectants Resistance Genes and the Susceptibility to Common Disinfectants of Extensively Drug-Resistant Carbapenem-Resistant <i>Klebsiella pneumoniae</i> Strains at a Tertiary Hospital in China.\",\"authors\":\"Kexin Zhao, Liang Wang, Jinglan Deng, Qiuxia Zuo, Maimaiti Adila, Xiao Wang, Zhe Dai, Ping Tian\",\"doi\":\"10.1089/mdr.2024.0089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbapenem-resistant <i>Klebsiella pneumoniae</i> (CRKP) infection has become a significant threat to global health. The application of chemical disinfectants is an effective infection control strategy to prevent the spread of CRKP in hospital environments. However, bacteria have shown reduced sensitivity to clinical disinfectants in recent years. Furthermore, bacteria can acquire antibiotic resistance due to the induction of disinfectants, posing a considerable challenge to hospital infection prevention and control. This study collected 68 CRKP strains from the Fifth Affiliated Hospital of Xinjiang Medical University in China from 2023 to 2024. These strains were isolated from the sputum, urine, and whole blood samples of patients diagnosed with CRKP infection. Antibiotic susceptibility tests were performed on CRKP strains. Concurrently, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of disinfectants (benzalkonium bromide, 1% iodophor disinfectant, alcohol, and chlorine-containing disinfectant) against the test isolates were determined by the broth microdilution method. The efflux pump genes (cepA, qacE, qacEΔ1, qacEΔ1-SUL1, oqxA, and oqxB) were detected using polymerase chain reaction. The results showed that 21 out of the 68 CRKP strains exhibited extensive drug resistance, whereas 47 were nonextensively drug-resistant. The MIC value for benzalkonium bromide disinfectants displayed statistically significant differences (<i>p</i> < 0.05) between extensively drug-resistant (XDR) and non-XDR strains. Additionally, the MBC values for benzalkonium bromide disinfectants and 1% iodophor disinfectants displayed statistically significant differences (<i>p</i> < 0.05) between XDR and non-XDR strains. The detection rates for the efflux pump genes were as follows: cepA 52.9%, qacE 39.7%, qacEΔ1 35.2%, qacEΔ1-SUL1 52.9%, oqxA 30.8%, and oqxB 32.3%. The detection rate of the qacEΔ1-SUL1 gene in XDR CRKP strains was significantly higher than in non-XDR CRKP strains (<i>p</i> < 0.05). This indicates a potential link between CRKP bacterial disinfectant efflux pump genes and CRKP bacterial resistance patterns. Ongoing monitoring of the declining sensitivity of XDR strains against disinfectants is essential for the effective control and prevention of superbug.</p>\",\"PeriodicalId\":18701,\"journal\":{\"name\":\"Microbial drug resistance\",\"volume\":\" \",\"pages\":\"407-414\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial drug resistance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/mdr.2024.0089\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial drug resistance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/mdr.2024.0089","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

摘要

耐碳青霉烯类肺炎克雷伯氏菌(CRKP)感染已成为全球健康的重大威胁。使用化学消毒剂是防止 CRKP 在医院环境中传播的有效感染控制策略。然而,近年来细菌对临床消毒剂的敏感性有所下降。此外,由于消毒剂的诱导作用,细菌会产生抗生素耐药性,这给医院感染防控工作带来了巨大挑战。本研究从 2023 年至 2024 年在中国新疆医科大学第五附属医院收集了 68 株 CRKP 菌株。这些菌株是从确诊为 CRKP 感染的患者的痰液、尿液和全血样本中分离出来的。对 CRKP 菌株进行了抗生素药敏试验。同时,采用肉汤微稀释法测定了消毒剂(苯扎溴铵、1%碘伏消毒剂、酒精和含氯消毒剂)对试验分离株的最低抑菌浓度(MIC)和最低杀菌浓度(MBC)。利用聚合酶链反应检测了外排泵基因(cepA、qacE、qacEΔ1、qacEΔ1-SUL1、ocxA 和 oqxB)。结果显示,在 68 株 CRKP 菌株中,21 株表现出广泛耐药性,47 株为非广泛耐药性。广泛耐药菌株(XDR)和非广泛耐药菌株对苯扎溴铵消毒剂的 MIC 值差异有统计学意义(p < 0.05)。此外,苯扎溴铵消毒剂和 1%碘伏消毒剂的 MBC 值在 XDR 菌株和非 XDR 菌株之间也有明显的统计学差异(p < 0.05)。外排泵基因的检出率如下:cepA 52.9%、qacE 39.7%、qacEΔ1 35.2%、qacEΔ1-SUL1 52.9%、ocxA 30.8%、ocxB 32.3%。在 XDR CRKP 菌株中,qacEΔ1-SUL1 基因的检出率明显高于非 XDR CRKP 菌株(p < 0.05)。这表明 CRKP 细菌消毒剂外排泵基因与 CRKP 细菌耐药性模式之间存在潜在联系。持续监测 XDR 菌株对消毒剂敏感性的下降对有效控制和预防超级细菌至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determining the Disinfectants Resistance Genes and the Susceptibility to Common Disinfectants of Extensively Drug-Resistant Carbapenem-Resistant Klebsiella pneumoniae Strains at a Tertiary Hospital in China.

Carbapenem-resistant Klebsiella pneumoniae (CRKP) infection has become a significant threat to global health. The application of chemical disinfectants is an effective infection control strategy to prevent the spread of CRKP in hospital environments. However, bacteria have shown reduced sensitivity to clinical disinfectants in recent years. Furthermore, bacteria can acquire antibiotic resistance due to the induction of disinfectants, posing a considerable challenge to hospital infection prevention and control. This study collected 68 CRKP strains from the Fifth Affiliated Hospital of Xinjiang Medical University in China from 2023 to 2024. These strains were isolated from the sputum, urine, and whole blood samples of patients diagnosed with CRKP infection. Antibiotic susceptibility tests were performed on CRKP strains. Concurrently, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of disinfectants (benzalkonium bromide, 1% iodophor disinfectant, alcohol, and chlorine-containing disinfectant) against the test isolates were determined by the broth microdilution method. The efflux pump genes (cepA, qacE, qacEΔ1, qacEΔ1-SUL1, oqxA, and oqxB) were detected using polymerase chain reaction. The results showed that 21 out of the 68 CRKP strains exhibited extensive drug resistance, whereas 47 were nonextensively drug-resistant. The MIC value for benzalkonium bromide disinfectants displayed statistically significant differences (p < 0.05) between extensively drug-resistant (XDR) and non-XDR strains. Additionally, the MBC values for benzalkonium bromide disinfectants and 1% iodophor disinfectants displayed statistically significant differences (p < 0.05) between XDR and non-XDR strains. The detection rates for the efflux pump genes were as follows: cepA 52.9%, qacE 39.7%, qacEΔ1 35.2%, qacEΔ1-SUL1 52.9%, oqxA 30.8%, and oqxB 32.3%. The detection rate of the qacEΔ1-SUL1 gene in XDR CRKP strains was significantly higher than in non-XDR CRKP strains (p < 0.05). This indicates a potential link between CRKP bacterial disinfectant efflux pump genes and CRKP bacterial resistance patterns. Ongoing monitoring of the declining sensitivity of XDR strains against disinfectants is essential for the effective control and prevention of superbug.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial drug resistance
Microbial drug resistance 医学-传染病学
CiteScore
6.00
自引率
3.80%
发文量
118
审稿时长
6-12 weeks
期刊介绍: Microbial Drug Resistance (MDR) is an international, peer-reviewed journal that covers the global spread and threat of multi-drug resistant clones of major pathogens that are widely documented in hospitals and the scientific community. The Journal addresses the serious challenges of trying to decipher the molecular mechanisms of drug resistance. MDR provides a multidisciplinary forum for peer-reviewed original publications as well as topical reviews and special reports. MDR coverage includes: Molecular biology of resistance mechanisms Virulence genes and disease Molecular epidemiology Drug design Infection control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信