Dorothee Geisenberger, Markus Große Perdekamp, Matthieu Glardon, Jan Kromeier, Stefan Pollak, Annette Thierauf-Emberger
{"title":"倾斜射击中骨碎片的分布:对含有人工骨板的复合模型进行的实验研究。","authors":"Dorothee Geisenberger, Markus Große Perdekamp, Matthieu Glardon, Jan Kromeier, Stefan Pollak, Annette Thierauf-Emberger","doi":"10.1007/s00414-024-03307-y","DOIUrl":null,"url":null,"abstract":"<p><p>In conventional gunshot injuries to targets containing bone the resulting osseous fragments do not precede but follow the bullet on its further way through adjacent soft tissues. The term \"secondary projectiles\" for the particles does not appear to be appropriate since they are not believed to have enough energy necessary for creating their own wound channels away from the temporary cavity. Former studies have shown that in angled shots to glass panes the bulk of splinters does not follow the bullet's trajectory: The majority of the glass fragments, especially the larger ones, move at right angles to the pane shot through. The aim of the presented study was to examine whether osseous fragments behave like glass splinters in angled shots to flat synthetic bone. In this context, it should also be assessed, whether the bone fragments might act as secondary projectiles in rare cases. To answer these questions, test shots were fired to composite models consisting of flat synthetic bone and ballistic gelatin. Pistol cartridges 9 mm Luger were used to fire the shots which were video-documented with a high-speed camera. Afterwards, the composite models underwent CT examination and macroscopic inspection. Video-documentation revealed that the larger bone particles from the perforation site move at a roughly right angle from the osseous sheet into the gelatin, causing an eccentric bulge of the temporary cavity. The smaller bone fragments were also lodged along the bullet's path, predominantly in the cracks radiating from the permanent wound channel.</p>","PeriodicalId":14071,"journal":{"name":"International Journal of Legal Medicine","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490459/pdf/","citationCount":"0","resultStr":"{\"title\":\"Distribution of bone fragments in angled shots: an experimental study conducted on composite models containing artificial bone plates.\",\"authors\":\"Dorothee Geisenberger, Markus Große Perdekamp, Matthieu Glardon, Jan Kromeier, Stefan Pollak, Annette Thierauf-Emberger\",\"doi\":\"10.1007/s00414-024-03307-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In conventional gunshot injuries to targets containing bone the resulting osseous fragments do not precede but follow the bullet on its further way through adjacent soft tissues. The term \\\"secondary projectiles\\\" for the particles does not appear to be appropriate since they are not believed to have enough energy necessary for creating their own wound channels away from the temporary cavity. Former studies have shown that in angled shots to glass panes the bulk of splinters does not follow the bullet's trajectory: The majority of the glass fragments, especially the larger ones, move at right angles to the pane shot through. The aim of the presented study was to examine whether osseous fragments behave like glass splinters in angled shots to flat synthetic bone. In this context, it should also be assessed, whether the bone fragments might act as secondary projectiles in rare cases. To answer these questions, test shots were fired to composite models consisting of flat synthetic bone and ballistic gelatin. Pistol cartridges 9 mm Luger were used to fire the shots which were video-documented with a high-speed camera. Afterwards, the composite models underwent CT examination and macroscopic inspection. Video-documentation revealed that the larger bone particles from the perforation site move at a roughly right angle from the osseous sheet into the gelatin, causing an eccentric bulge of the temporary cavity. The smaller bone fragments were also lodged along the bullet's path, predominantly in the cracks radiating from the permanent wound channel.</p>\",\"PeriodicalId\":14071,\"journal\":{\"name\":\"International Journal of Legal Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490459/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Legal Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00414-024-03307-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Legal Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00414-024-03307-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
Distribution of bone fragments in angled shots: an experimental study conducted on composite models containing artificial bone plates.
In conventional gunshot injuries to targets containing bone the resulting osseous fragments do not precede but follow the bullet on its further way through adjacent soft tissues. The term "secondary projectiles" for the particles does not appear to be appropriate since they are not believed to have enough energy necessary for creating their own wound channels away from the temporary cavity. Former studies have shown that in angled shots to glass panes the bulk of splinters does not follow the bullet's trajectory: The majority of the glass fragments, especially the larger ones, move at right angles to the pane shot through. The aim of the presented study was to examine whether osseous fragments behave like glass splinters in angled shots to flat synthetic bone. In this context, it should also be assessed, whether the bone fragments might act as secondary projectiles in rare cases. To answer these questions, test shots were fired to composite models consisting of flat synthetic bone and ballistic gelatin. Pistol cartridges 9 mm Luger were used to fire the shots which were video-documented with a high-speed camera. Afterwards, the composite models underwent CT examination and macroscopic inspection. Video-documentation revealed that the larger bone particles from the perforation site move at a roughly right angle from the osseous sheet into the gelatin, causing an eccentric bulge of the temporary cavity. The smaller bone fragments were also lodged along the bullet's path, predominantly in the cracks radiating from the permanent wound channel.
期刊介绍:
The International Journal of Legal Medicine aims to improve the scientific resources used in the elucidation of crime and related forensic applications at a high level of evidential proof. The journal offers review articles tracing development in specific areas, with up-to-date analysis; original articles discussing significant recent research results; case reports describing interesting and exceptional examples; population data; letters to the editors; and technical notes, which appear in a section originally created for rapid publication of data in the dynamic field of DNA analysis.