Rong Zhang, Jue Wang, Yanlong Zhang, Xizhuo Wang, Zhen Zhang, Xiangbo Kong, Fu Liu, Jiaxing Fang, Yanan Zheng, Sufang Zhang
{"title":"破坏盐袋木虱的嗅觉反应:控制松树枯萎病病媒昆虫的两个潜在目标基因","authors":"Rong Zhang, Jue Wang, Yanlong Zhang, Xizhuo Wang, Zhen Zhang, Xiangbo Kong, Fu Liu, Jiaxing Fang, Yanan Zheng, Sufang Zhang","doi":"10.1111/1744-7917.13431","DOIUrl":null,"url":null,"abstract":"<p><p>Worldwide, pine forests have been threatened by a devastating pine wood disease caused by Bursaphelenchus xylophilus, with Monochamus saltuarius being a newly recorded vector of the disease in Northeast China. The olfactory system plays important roles in both feeding and oviposition during the adult stage of M. saltuarius, and olfactory gene function research is essential for gaining an understanding of the olfactory mechanisms of this pest. However, there is limited information available regarding olfactory gene functions in this pest. In the present study, we selected 7 olfactory genes, including 2 chemosensory proteins, 2 odorant-binding proteins, the odorant co-receptor and 2 odorant receptors, which were relatively highly expressed during the adult stage. We silenced these genes by RNA interference (RNAi), and real-time quantitative PCR was used to detect their expression levels after double-stranded RNA (dsRNA) injection. The results indicate that these genes were significantly downregulated at 2 d post-dsRNA injection, and this was sustained until 5 d post-injection. Electroantennography tests indicated that the knockdown of MsalOBP14 and MsalOrco impaired the olfactory response of M. saltuarius to 11 host volatiles and 1 sex pheromone compound. Y-tube experiments further confirmed that downregulated MsalOBP14 and MsalOrco expression led to olfactory dysfunction in M. saltuarius, which significantly lost selectivity. The results indicate that MsalOBP14 and MsalOrco play critical roles in sex communication and host volatile detection in M. saltuarius, and possibly represent 2 effective targets for controlling this forest pest through olfactory disruption.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disrupting the olfactory response in Monochamus saltuarius: Two potential target genes for controlling the vector insect of pine wilt disease.\",\"authors\":\"Rong Zhang, Jue Wang, Yanlong Zhang, Xizhuo Wang, Zhen Zhang, Xiangbo Kong, Fu Liu, Jiaxing Fang, Yanan Zheng, Sufang Zhang\",\"doi\":\"10.1111/1744-7917.13431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Worldwide, pine forests have been threatened by a devastating pine wood disease caused by Bursaphelenchus xylophilus, with Monochamus saltuarius being a newly recorded vector of the disease in Northeast China. The olfactory system plays important roles in both feeding and oviposition during the adult stage of M. saltuarius, and olfactory gene function research is essential for gaining an understanding of the olfactory mechanisms of this pest. However, there is limited information available regarding olfactory gene functions in this pest. In the present study, we selected 7 olfactory genes, including 2 chemosensory proteins, 2 odorant-binding proteins, the odorant co-receptor and 2 odorant receptors, which were relatively highly expressed during the adult stage. We silenced these genes by RNA interference (RNAi), and real-time quantitative PCR was used to detect their expression levels after double-stranded RNA (dsRNA) injection. The results indicate that these genes were significantly downregulated at 2 d post-dsRNA injection, and this was sustained until 5 d post-injection. Electroantennography tests indicated that the knockdown of MsalOBP14 and MsalOrco impaired the olfactory response of M. saltuarius to 11 host volatiles and 1 sex pheromone compound. Y-tube experiments further confirmed that downregulated MsalOBP14 and MsalOrco expression led to olfactory dysfunction in M. saltuarius, which significantly lost selectivity. The results indicate that MsalOBP14 and MsalOrco play critical roles in sex communication and host volatile detection in M. saltuarius, and possibly represent 2 effective targets for controlling this forest pest through olfactory disruption.</p>\",\"PeriodicalId\":13618,\"journal\":{\"name\":\"Insect Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/1744-7917.13431\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.13431","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Disrupting the olfactory response in Monochamus saltuarius: Two potential target genes for controlling the vector insect of pine wilt disease.
Worldwide, pine forests have been threatened by a devastating pine wood disease caused by Bursaphelenchus xylophilus, with Monochamus saltuarius being a newly recorded vector of the disease in Northeast China. The olfactory system plays important roles in both feeding and oviposition during the adult stage of M. saltuarius, and olfactory gene function research is essential for gaining an understanding of the olfactory mechanisms of this pest. However, there is limited information available regarding olfactory gene functions in this pest. In the present study, we selected 7 olfactory genes, including 2 chemosensory proteins, 2 odorant-binding proteins, the odorant co-receptor and 2 odorant receptors, which were relatively highly expressed during the adult stage. We silenced these genes by RNA interference (RNAi), and real-time quantitative PCR was used to detect their expression levels after double-stranded RNA (dsRNA) injection. The results indicate that these genes were significantly downregulated at 2 d post-dsRNA injection, and this was sustained until 5 d post-injection. Electroantennography tests indicated that the knockdown of MsalOBP14 and MsalOrco impaired the olfactory response of M. saltuarius to 11 host volatiles and 1 sex pheromone compound. Y-tube experiments further confirmed that downregulated MsalOBP14 and MsalOrco expression led to olfactory dysfunction in M. saltuarius, which significantly lost selectivity. The results indicate that MsalOBP14 and MsalOrco play critical roles in sex communication and host volatile detection in M. saltuarius, and possibly represent 2 effective targets for controlling this forest pest through olfactory disruption.
期刊介绍:
Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.