利用系统发育和全基因组调查加性和替换性水平基因转移。

IF 3.2 2区 生物学 Q2 EVOLUTIONARY BIOLOGY
Lina Kloub, Sophia Gosselin, Joerg Graf, Johann Peter Gogarten, Mukul S Bansal
{"title":"利用系统发育和全基因组调查加性和替换性水平基因转移。","authors":"Lina Kloub, Sophia Gosselin, Joerg Graf, Johann Peter Gogarten, Mukul S Bansal","doi":"10.1093/gbe/evae180","DOIUrl":null,"url":null,"abstract":"<p><p>Horizontal gene transfer (HGT) is fundamental to microbial evolution and adaptation. When a gene is horizontally transferred, it may either add itself as a new gene to the recipient genome (possibly displacing nonhomologous genes) or replace an existing homologous gene. Currently, studies do not usually distinguish between \"additive\" and \"replacing\" HGTs, and their relative frequencies, integration mechanisms, and specific roles in microbial evolution are poorly understood. In this work, we develop a novel computational framework for large-scale classification of HGTs as either additive or replacing. Our framework leverages recently developed phylogenetic approaches for HGT detection and classifies HGTs inferred between terminal edges based on gene orderings along genomes and phylogenetic relationships between the microbial species under consideration. The resulting method, called DART, is highly customizable and scalable and can classify a large fraction of inferred HGTs with high confidence and statistical support. Our application of DART to a large dataset of thousands of gene families from 103 Aeromonas genomes provides insights into the relative frequencies, functional biases, and integration mechanisms of additive and replacing HGTs. Among other results, we find that (i) the relative frequency of additive HGT increases with increasing phylogenetic distance, (ii) replacing HGT dominates at shorter phylogenetic distances, (iii) additive and replacing HGTs have strikingly different functional profiles, (iv) homologous recombination in flanking regions of a novel gene may be a frequent integration mechanism for additive HGT, and (v) phages and mobile genetic elements likely play an important role in facilitating additive HGT.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375855/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigating Additive and Replacing Horizontal Gene Transfers Using Phylogenies and Whole Genomes.\",\"authors\":\"Lina Kloub, Sophia Gosselin, Joerg Graf, Johann Peter Gogarten, Mukul S Bansal\",\"doi\":\"10.1093/gbe/evae180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Horizontal gene transfer (HGT) is fundamental to microbial evolution and adaptation. When a gene is horizontally transferred, it may either add itself as a new gene to the recipient genome (possibly displacing nonhomologous genes) or replace an existing homologous gene. Currently, studies do not usually distinguish between \\\"additive\\\" and \\\"replacing\\\" HGTs, and their relative frequencies, integration mechanisms, and specific roles in microbial evolution are poorly understood. In this work, we develop a novel computational framework for large-scale classification of HGTs as either additive or replacing. Our framework leverages recently developed phylogenetic approaches for HGT detection and classifies HGTs inferred between terminal edges based on gene orderings along genomes and phylogenetic relationships between the microbial species under consideration. The resulting method, called DART, is highly customizable and scalable and can classify a large fraction of inferred HGTs with high confidence and statistical support. Our application of DART to a large dataset of thousands of gene families from 103 Aeromonas genomes provides insights into the relative frequencies, functional biases, and integration mechanisms of additive and replacing HGTs. Among other results, we find that (i) the relative frequency of additive HGT increases with increasing phylogenetic distance, (ii) replacing HGT dominates at shorter phylogenetic distances, (iii) additive and replacing HGTs have strikingly different functional profiles, (iv) homologous recombination in flanking regions of a novel gene may be a frequent integration mechanism for additive HGT, and (v) phages and mobile genetic elements likely play an important role in facilitating additive HGT.</p>\",\"PeriodicalId\":12779,\"journal\":{\"name\":\"Genome Biology and Evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375855/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gbe/evae180\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae180","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

水平基因转移(HGT)是微生物进化和适应的基础。当一个基因发生水平转移时,它可能作为一个新基因添加到受体基因组中(可能取代非同源基因),也可能取代现有的同源基因。目前的研究通常不区分 "添加型 "和 "替换型 "HGT,对它们的相对频率、整合机制以及在微生物进化中的具体作用也知之甚少。在这项工作中,我们开发了一种新的计算框架,用于将 HGTs 大规模地分类为 "添加型 "或 "替代型"。我们的框架利用了最近开发的系统发育方法来检测 HGT,并根据基因组的基因排序和所考虑的微生物物种之间的系统发育关系,对终端边缘之间推断出的 HGT 进行分类。由此产生的 9 种方法被称为 DART,具有高度的可定制性和可扩展性,能以较高的置信度和统计支持率对大量推断出的 HGT 进行分类。我们将 DART 应用于来自 103 个气单胞菌基因组的数千个基因家族的大型数据集,从而深入了解了加性和取代性 HGT 的相对频率、功能偏差和整合机制。除其他结果外,我们还发现:(i) 添加型 HGT 的相对频率随着系统发育距离的增加而增加;(ii) 替换型 HGT 在较短的系统发育距离中占主导地位;(iii) 添加型 HGT 和替换型 HGT 具有显著不同的功能特征;(iv) 新基因侧翼区域的同源重组可能是添加型 HGT 的频繁整合机制;(v) 噬菌体和移动遗传因子可能在促进添加型 HGT 中发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating Additive and Replacing Horizontal Gene Transfers Using Phylogenies and Whole Genomes.

Horizontal gene transfer (HGT) is fundamental to microbial evolution and adaptation. When a gene is horizontally transferred, it may either add itself as a new gene to the recipient genome (possibly displacing nonhomologous genes) or replace an existing homologous gene. Currently, studies do not usually distinguish between "additive" and "replacing" HGTs, and their relative frequencies, integration mechanisms, and specific roles in microbial evolution are poorly understood. In this work, we develop a novel computational framework for large-scale classification of HGTs as either additive or replacing. Our framework leverages recently developed phylogenetic approaches for HGT detection and classifies HGTs inferred between terminal edges based on gene orderings along genomes and phylogenetic relationships between the microbial species under consideration. The resulting method, called DART, is highly customizable and scalable and can classify a large fraction of inferred HGTs with high confidence and statistical support. Our application of DART to a large dataset of thousands of gene families from 103 Aeromonas genomes provides insights into the relative frequencies, functional biases, and integration mechanisms of additive and replacing HGTs. Among other results, we find that (i) the relative frequency of additive HGT increases with increasing phylogenetic distance, (ii) replacing HGT dominates at shorter phylogenetic distances, (iii) additive and replacing HGTs have strikingly different functional profiles, (iv) homologous recombination in flanking regions of a novel gene may be a frequent integration mechanism for additive HGT, and (v) phages and mobile genetic elements likely play an important role in facilitating additive HGT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology and Evolution
Genome Biology and Evolution EVOLUTIONARY BIOLOGY-GENETICS & HEREDITY
CiteScore
5.80
自引率
6.10%
发文量
169
审稿时长
1 months
期刊介绍: About the journal Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信