通过 p-n 异质结、光热和催化协同作用,将 BiVO4 薄膜与 CoAl2O4 纳米粒子耦合用于利用宽太阳光谱的光电化学水分离。

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Langmuir Pub Date : 2024-09-03 Epub Date: 2024-08-20 DOI:10.1021/acs.langmuir.4c02294
Yujie Huang, Binyao Liu, Yiwen Yang, Hao Xiao, Tao Han, Hanmei Jiang, Jiahe Li, Yong Zhou, Gaili Ke, Huichao He
{"title":"通过 p-n 异质结、光热和催化协同作用,将 BiVO4 薄膜与 CoAl2O4 纳米粒子耦合用于利用宽太阳光谱的光电化学水分离。","authors":"Yujie Huang, Binyao Liu, Yiwen Yang, Hao Xiao, Tao Han, Hanmei Jiang, Jiahe Li, Yong Zhou, Gaili Ke, Huichao He","doi":"10.1021/acs.langmuir.4c02294","DOIUrl":null,"url":null,"abstract":"<p><p>Water oxidation is an endothermic and kinetics-sluggish reaction; the research of photoanodes with photothermal and cocatalytic properties is of great significance. Herein, BiVO<sub>4</sub>/CoAl<sub>2</sub>O<sub>4</sub> film photoanodes were studied for solar water splitting through coupling spinel p-type CoAl<sub>2</sub>O<sub>4</sub> nanoparticles on n-type BiVO<sub>4</sub> films. Compared to the BiVO<sub>4</sub> photoanode, better performance was observed on the BiVO<sub>4</sub>/CoAl<sub>2</sub>O<sub>4</sub> photoanode during water oxidation. A photocurrent of 3.47 mA/cm<sup>2</sup> was produced on the BiVO<sub>4</sub>/CoAl<sub>2</sub>O<sub>4</sub> photoanode at 1.23 V vs RHE, which is two-fold to the BiVO<sub>4</sub> photoanode (1.70 mA/cm<sup>2</sup>). Additionally, the BiVO<sub>4</sub>/CoAl<sub>2</sub>O<sub>4</sub> photoanodes showed an acceptable stability for water oxidation. The BiVO<sub>4</sub>/CoAl<sub>2</sub>O<sub>4</sub> photoanode being of higher water oxidation performance could be attributed to the presence of p-n heterojunction, cocatalytic, and photothermal effects. In specific, under the excitation of λ < 520 nm light, the holes produced in/on BiVO<sub>4</sub> can be transferred to CoAl<sub>2</sub>O<sub>4</sub> owing to the p-n heterojunctions of BiVO<sub>4</sub>/CoAl<sub>2</sub>O<sub>4</sub>. Meanwhile, the temperature on the BiVO<sub>4</sub>/CoAl<sub>2</sub>O<sub>4</sub> photoanode rises quickly up to ∼53 °C under AM 1.5 G irradiation due to the photothermal property of CoAl<sub>2</sub>O<sub>4</sub> through capturing the 520 < λ < 720 nm light. The temperature rising on the BiVO<sub>4</sub>/CoAl<sub>2</sub>O<sub>4</sub> photoanode improves the cocatalytic activity of CoAl<sub>2</sub>O<sub>4</sub> and modifies the wettability of BiVO<sub>4</sub>/CoAl<sub>2</sub>O<sub>4</sub> for effective water oxidation.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":"18670-18682"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BiVO<sub>4</sub> Film Coupling with CoAl<sub>2</sub>O<sub>4</sub> Nanoparticles for Photoelectrochemical Water Splitting Utilizing Broad Solar Spectrum through p-n Heterojunction, Photothermal, and Cocatalytic Synergism.\",\"authors\":\"Yujie Huang, Binyao Liu, Yiwen Yang, Hao Xiao, Tao Han, Hanmei Jiang, Jiahe Li, Yong Zhou, Gaili Ke, Huichao He\",\"doi\":\"10.1021/acs.langmuir.4c02294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Water oxidation is an endothermic and kinetics-sluggish reaction; the research of photoanodes with photothermal and cocatalytic properties is of great significance. Herein, BiVO<sub>4</sub>/CoAl<sub>2</sub>O<sub>4</sub> film photoanodes were studied for solar water splitting through coupling spinel p-type CoAl<sub>2</sub>O<sub>4</sub> nanoparticles on n-type BiVO<sub>4</sub> films. Compared to the BiVO<sub>4</sub> photoanode, better performance was observed on the BiVO<sub>4</sub>/CoAl<sub>2</sub>O<sub>4</sub> photoanode during water oxidation. A photocurrent of 3.47 mA/cm<sup>2</sup> was produced on the BiVO<sub>4</sub>/CoAl<sub>2</sub>O<sub>4</sub> photoanode at 1.23 V vs RHE, which is two-fold to the BiVO<sub>4</sub> photoanode (1.70 mA/cm<sup>2</sup>). Additionally, the BiVO<sub>4</sub>/CoAl<sub>2</sub>O<sub>4</sub> photoanodes showed an acceptable stability for water oxidation. The BiVO<sub>4</sub>/CoAl<sub>2</sub>O<sub>4</sub> photoanode being of higher water oxidation performance could be attributed to the presence of p-n heterojunction, cocatalytic, and photothermal effects. In specific, under the excitation of λ < 520 nm light, the holes produced in/on BiVO<sub>4</sub> can be transferred to CoAl<sub>2</sub>O<sub>4</sub> owing to the p-n heterojunctions of BiVO<sub>4</sub>/CoAl<sub>2</sub>O<sub>4</sub>. Meanwhile, the temperature on the BiVO<sub>4</sub>/CoAl<sub>2</sub>O<sub>4</sub> photoanode rises quickly up to ∼53 °C under AM 1.5 G irradiation due to the photothermal property of CoAl<sub>2</sub>O<sub>4</sub> through capturing the 520 < λ < 720 nm light. The temperature rising on the BiVO<sub>4</sub>/CoAl<sub>2</sub>O<sub>4</sub> photoanode improves the cocatalytic activity of CoAl<sub>2</sub>O<sub>4</sub> and modifies the wettability of BiVO<sub>4</sub>/CoAl<sub>2</sub>O<sub>4</sub> for effective water oxidation.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\" \",\"pages\":\"18670-18682\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c02294\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02294","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水氧化是一种内热和动力学缓慢的反应,因此研究具有光热和茧催化特性的光阳极具有重要意义。本文通过在 n 型 BiVO4 薄膜上耦合尖晶石 p 型 CoAl2O4 纳米颗粒,研究了 BiVO4/CoAl2O4 薄膜光阳极在太阳能水分离中的应用。与 BiVO4 光阳极相比,BiVO4/CoAl2O4 光阳极在水氧化过程中具有更好的性能。在 1.23 V 对比 RHE 时,BiVO4/CoAl2O4 光阳极产生了 3.47 mA/cm2 的光电流,是 BiVO4 光阳极(1.70 mA/cm2)的两倍。此外,BiVO4/CoAl2O4 光阳极在水氧化方面表现出了可接受的稳定性。BiVO4/CoAl2O4 光阳极之所以具有更高的水氧化性能,可能是由于其存在 p-n 异质结、协同催化和光热效应。具体来说,在 λ < 520 nm 的光激发下,由于 BiVO4/CoAl2O4 的 p-n 异质结,BiVO4 内/上产生的空穴可以转移到 CoAl2O4 上。同时,在 AM 1.5 G 的辐照下,BiVO4/CoAl2O4 光阳极上的温度迅速升高至 ∼53 °C,这是由于 CoAl2O4 通过捕捉 520 < λ < 720 nm 的光具有光热特性。BiVO4/CoAl2O4 光阳极温度的升高提高了 CoAl2O4 的催化活性,并改变了 BiVO4/CoAl2O4 的润湿性,从而实现了有效的水氧化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

BiVO<sub>4</sub> Film Coupling with CoAl<sub>2</sub>O<sub>4</sub> Nanoparticles for Photoelectrochemical Water Splitting Utilizing Broad Solar Spectrum through p-n Heterojunction, Photothermal, and Cocatalytic Synergism.

BiVO4 Film Coupling with CoAl2O4 Nanoparticles for Photoelectrochemical Water Splitting Utilizing Broad Solar Spectrum through p-n Heterojunction, Photothermal, and Cocatalytic Synergism.

Water oxidation is an endothermic and kinetics-sluggish reaction; the research of photoanodes with photothermal and cocatalytic properties is of great significance. Herein, BiVO4/CoAl2O4 film photoanodes were studied for solar water splitting through coupling spinel p-type CoAl2O4 nanoparticles on n-type BiVO4 films. Compared to the BiVO4 photoanode, better performance was observed on the BiVO4/CoAl2O4 photoanode during water oxidation. A photocurrent of 3.47 mA/cm2 was produced on the BiVO4/CoAl2O4 photoanode at 1.23 V vs RHE, which is two-fold to the BiVO4 photoanode (1.70 mA/cm2). Additionally, the BiVO4/CoAl2O4 photoanodes showed an acceptable stability for water oxidation. The BiVO4/CoAl2O4 photoanode being of higher water oxidation performance could be attributed to the presence of p-n heterojunction, cocatalytic, and photothermal effects. In specific, under the excitation of λ < 520 nm light, the holes produced in/on BiVO4 can be transferred to CoAl2O4 owing to the p-n heterojunctions of BiVO4/CoAl2O4. Meanwhile, the temperature on the BiVO4/CoAl2O4 photoanode rises quickly up to ∼53 °C under AM 1.5 G irradiation due to the photothermal property of CoAl2O4 through capturing the 520 < λ < 720 nm light. The temperature rising on the BiVO4/CoAl2O4 photoanode improves the cocatalytic activity of CoAl2O4 and modifies the wettability of BiVO4/CoAl2O4 for effective water oxidation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信