通过多保真度高斯过程高效生成扭转能量曲线,用于受阻转子修正。

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Journal of Chemical Theory and Computation Pub Date : 2024-09-10 Epub Date: 2024-08-20 DOI:10.1021/acs.jctc.4c00475
Maximilian Fleck, Wassja A Kopp, Narasimhan Viswanathan, Niels Hansen, Joachim Gross, Kai Leonhard
{"title":"通过多保真度高斯过程高效生成扭转能量曲线,用于受阻转子修正。","authors":"Maximilian Fleck, Wassja A Kopp, Narasimhan Viswanathan, Niels Hansen, Joachim Gross, Kai Leonhard","doi":"10.1021/acs.jctc.4c00475","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate thermochemistry computations often require proper treatment of torsional modes. The one-dimensional hindered rotor model has proven to be a computationally efficient solution, given a sufficiently accurate potential energy surface. Methods that provide potential energies at various compromises of uncertainty and computational time demand can be optimally combined within a multifidelity treatment. In this study, we demonstrate how multifidelity modeling leads to (1) smooth interpolation along low-fidelity scan points with uncertainty estimates, (2) inclusion of high-fidelity data that change the energetic order of conformations, and (3) predicting best next-point calculations to extend an initial coarse grid. Our diverse application set comprises molecules, clusters, and transition states of alcohols, ethers, and rings. We discuss limitations for cases in which the low-fidelity computation is highly unreliable. Different features of the potential energy curve affect different quantities. To obtain \"optimal\" fits, we apply strategies ranging from simple minimization of deviations to developing an acquisition function tailored for statistical thermodynamics. Bayesian prediction of best next calculations can save a substantial amount of computation time for one- and multidimensional hindered rotors.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Generation of Torsional Energy Profiles by Multifidelity Gaussian Processes for Hindered Rotor Corrections.\",\"authors\":\"Maximilian Fleck, Wassja A Kopp, Narasimhan Viswanathan, Niels Hansen, Joachim Gross, Kai Leonhard\",\"doi\":\"10.1021/acs.jctc.4c00475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate thermochemistry computations often require proper treatment of torsional modes. The one-dimensional hindered rotor model has proven to be a computationally efficient solution, given a sufficiently accurate potential energy surface. Methods that provide potential energies at various compromises of uncertainty and computational time demand can be optimally combined within a multifidelity treatment. In this study, we demonstrate how multifidelity modeling leads to (1) smooth interpolation along low-fidelity scan points with uncertainty estimates, (2) inclusion of high-fidelity data that change the energetic order of conformations, and (3) predicting best next-point calculations to extend an initial coarse grid. Our diverse application set comprises molecules, clusters, and transition states of alcohols, ethers, and rings. We discuss limitations for cases in which the low-fidelity computation is highly unreliable. Different features of the potential energy curve affect different quantities. To obtain \\\"optimal\\\" fits, we apply strategies ranging from simple minimization of deviations to developing an acquisition function tailored for statistical thermodynamics. Bayesian prediction of best next calculations can save a substantial amount of computation time for one- and multidimensional hindered rotors.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c00475\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00475","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

精确的热化学计算通常需要适当处理扭转模式。一维受阻转子模型已被证明是一种计算效率很高的解决方案,只要有足够精确的势能面。在不确定性和计算时间需求的不同折衷条件下提供势能的方法可以在多保真度处理中优化组合。在本研究中,我们展示了多保真度建模如何实现:(1) 沿具有不确定性估计的低保真度扫描点进行平滑插值;(2) 加入改变构象能量顺序的高保真数据;以及 (3) 预测最佳下一点计算,以扩展初始粗网格。我们的应用集多种多样,包括分子、簇以及醇、醚和环的过渡态。我们讨论了低保真计算非常不可靠时的局限性。势能曲线的不同特征会影响不同的量。为了获得 "最佳 "拟合,我们采用了各种策略,从简单的偏差最小化,到开发专为统计热力学定制的获取函数。对于一维和多维受阻转子,贝叶斯预测最佳下一步计算可以节省大量计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient Generation of Torsional Energy Profiles by Multifidelity Gaussian Processes for Hindered Rotor Corrections.

Efficient Generation of Torsional Energy Profiles by Multifidelity Gaussian Processes for Hindered Rotor Corrections.

Accurate thermochemistry computations often require proper treatment of torsional modes. The one-dimensional hindered rotor model has proven to be a computationally efficient solution, given a sufficiently accurate potential energy surface. Methods that provide potential energies at various compromises of uncertainty and computational time demand can be optimally combined within a multifidelity treatment. In this study, we demonstrate how multifidelity modeling leads to (1) smooth interpolation along low-fidelity scan points with uncertainty estimates, (2) inclusion of high-fidelity data that change the energetic order of conformations, and (3) predicting best next-point calculations to extend an initial coarse grid. Our diverse application set comprises molecules, clusters, and transition states of alcohols, ethers, and rings. We discuss limitations for cases in which the low-fidelity computation is highly unreliable. Different features of the potential energy curve affect different quantities. To obtain "optimal" fits, we apply strategies ranging from simple minimization of deviations to developing an acquisition function tailored for statistical thermodynamics. Bayesian prediction of best next calculations can save a substantial amount of computation time for one- and multidimensional hindered rotors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信