{"title":"人脐带间充质干细胞衍生的细胞外囊泡用于根尖周炎大鼠颌骨再生。","authors":"Jiahui Gao, Dongao Zhu, Yue Fan, Honghong Liu, Zuojun Shen","doi":"10.1021/acsbiomaterials.4c00622","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles derived from mesenchymal stem cells (MSCs-EVs) have great potential for bone remodeling and anti-inflammatory therapy. For the repair and reconstruction of inflammatory jawbone defects caused by periapical periodontitis, bone meal filling after debridement is commonly used in the clinic. However, this treatment has disadvantages such as large individual differences and the need for surgical operation. Therefore, it is of great significance to search for other bioactive substances that can promote jawbone regeneration in periapical periodontitis. Herein, it is found that CT results showed that local injection of human umbilical cord mesenchymal stem cells-derived extracellular vesicles (HUC-MSCs-EVs) and bone meal filling into the alveolar bone defect area could promote bone tissue regeneration using a rat model of a jawbone defect in periapical periodontitis. Histologically, the new periodontal tissue in the bone defect area was thicker, and the number of blood vessels was higher by local injection of HUC-MSCs-EVs, and fewer inflammatory cells and osteoclasts were formed compared to bone meal filling. In vitro, HUC-MSCs-EVs can be internalized by rat bone marrow mesenchymal stem cells (BMSCs), enhancing the ability for proliferation and migration of BMSCs. Additionally, 20 μg/mL HUC-MSCs-EVs can facilitate the expression of osteogenic genes and proteins including runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), and osteopontin (OPN). In summary, in vivo and in vitro experiments showed that HUC-MSCs-EVs can promote bone regeneration in periapical periodontitis, and the effect of tissue regeneration is better than that of traditional bone meal treatment. Therefore, local injection of HUC-MSCs-EVs may be an effective method to promote jawbone regeneration in periapical periodontitis.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"5784-5795"},"PeriodicalIF":5.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human Umbilical Cord Mesenchymal Stem Cells-Derived Extracellular Vesicles for Rat Jawbone Regeneration in Periapical Periodontitis.\",\"authors\":\"Jiahui Gao, Dongao Zhu, Yue Fan, Honghong Liu, Zuojun Shen\",\"doi\":\"10.1021/acsbiomaterials.4c00622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extracellular vesicles derived from mesenchymal stem cells (MSCs-EVs) have great potential for bone remodeling and anti-inflammatory therapy. For the repair and reconstruction of inflammatory jawbone defects caused by periapical periodontitis, bone meal filling after debridement is commonly used in the clinic. However, this treatment has disadvantages such as large individual differences and the need for surgical operation. Therefore, it is of great significance to search for other bioactive substances that can promote jawbone regeneration in periapical periodontitis. Herein, it is found that CT results showed that local injection of human umbilical cord mesenchymal stem cells-derived extracellular vesicles (HUC-MSCs-EVs) and bone meal filling into the alveolar bone defect area could promote bone tissue regeneration using a rat model of a jawbone defect in periapical periodontitis. Histologically, the new periodontal tissue in the bone defect area was thicker, and the number of blood vessels was higher by local injection of HUC-MSCs-EVs, and fewer inflammatory cells and osteoclasts were formed compared to bone meal filling. In vitro, HUC-MSCs-EVs can be internalized by rat bone marrow mesenchymal stem cells (BMSCs), enhancing the ability for proliferation and migration of BMSCs. Additionally, 20 μg/mL HUC-MSCs-EVs can facilitate the expression of osteogenic genes and proteins including runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), and osteopontin (OPN). In summary, in vivo and in vitro experiments showed that HUC-MSCs-EVs can promote bone regeneration in periapical periodontitis, and the effect of tissue regeneration is better than that of traditional bone meal treatment. Therefore, local injection of HUC-MSCs-EVs may be an effective method to promote jawbone regeneration in periapical periodontitis.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\" \",\"pages\":\"5784-5795\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.4c00622\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c00622","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Human Umbilical Cord Mesenchymal Stem Cells-Derived Extracellular Vesicles for Rat Jawbone Regeneration in Periapical Periodontitis.
Extracellular vesicles derived from mesenchymal stem cells (MSCs-EVs) have great potential for bone remodeling and anti-inflammatory therapy. For the repair and reconstruction of inflammatory jawbone defects caused by periapical periodontitis, bone meal filling after debridement is commonly used in the clinic. However, this treatment has disadvantages such as large individual differences and the need for surgical operation. Therefore, it is of great significance to search for other bioactive substances that can promote jawbone regeneration in periapical periodontitis. Herein, it is found that CT results showed that local injection of human umbilical cord mesenchymal stem cells-derived extracellular vesicles (HUC-MSCs-EVs) and bone meal filling into the alveolar bone defect area could promote bone tissue regeneration using a rat model of a jawbone defect in periapical periodontitis. Histologically, the new periodontal tissue in the bone defect area was thicker, and the number of blood vessels was higher by local injection of HUC-MSCs-EVs, and fewer inflammatory cells and osteoclasts were formed compared to bone meal filling. In vitro, HUC-MSCs-EVs can be internalized by rat bone marrow mesenchymal stem cells (BMSCs), enhancing the ability for proliferation and migration of BMSCs. Additionally, 20 μg/mL HUC-MSCs-EVs can facilitate the expression of osteogenic genes and proteins including runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), and osteopontin (OPN). In summary, in vivo and in vitro experiments showed that HUC-MSCs-EVs can promote bone regeneration in periapical periodontitis, and the effect of tissue regeneration is better than that of traditional bone meal treatment. Therefore, local injection of HUC-MSCs-EVs may be an effective method to promote jawbone regeneration in periapical periodontitis.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture