利用超分子两亲巨型纳米管生成合成缝隙连接

IF 19.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ai Kohata, Kazushi Kinbara
{"title":"利用超分子两亲巨型纳米管生成合成缝隙连接","authors":"Ai Kohata, Kazushi Kinbara","doi":"10.1038/s41557-024-01604-y","DOIUrl":null,"url":null,"abstract":"The construction of synthetic cells holds great importance for exploring complex biological systems and could potentially provide insights into the origins of life. Now, synthetic gap junctional channels have been developed as a building block to construct synthetic cells that can mediate intercellular transport of ions and bioactive species.","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":null,"pages":null},"PeriodicalIF":19.2000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating synthetic gap junctions using supramolecular amphiphilic giant nanotubes\",\"authors\":\"Ai Kohata, Kazushi Kinbara\",\"doi\":\"10.1038/s41557-024-01604-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The construction of synthetic cells holds great importance for exploring complex biological systems and could potentially provide insights into the origins of life. Now, synthetic gap junctional channels have been developed as a building block to construct synthetic cells that can mediate intercellular transport of ions and bioactive species.\",\"PeriodicalId\":18909,\"journal\":{\"name\":\"Nature chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.2000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41557-024-01604-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41557-024-01604-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

合成细胞的构建对于探索复杂的生物系统具有重要意义,并有可能为生命起源提供启示。现在,合成缝隙连接通道已被开发出来,作为构建合成细胞的基石,它可以介导离子和生物活性物质的细胞间运输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Generating synthetic gap junctions using supramolecular amphiphilic giant nanotubes

Generating synthetic gap junctions using supramolecular amphiphilic giant nanotubes

Generating synthetic gap junctions using supramolecular amphiphilic giant nanotubes
The construction of synthetic cells holds great importance for exploring complex biological systems and could potentially provide insights into the origins of life. Now, synthetic gap junctional channels have been developed as a building block to construct synthetic cells that can mediate intercellular transport of ions and bioactive species.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature chemistry
Nature chemistry 化学-化学综合
CiteScore
29.60
自引率
1.40%
发文量
226
审稿时长
1.7 months
期刊介绍: Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry. The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry. Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry. Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests. Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信