{"title":"用于研究分子间电荷转移状态的合成模型界面","authors":"","doi":"10.1038/s41557-024-01579-w","DOIUrl":null,"url":null,"abstract":"The synthesis of model heterojunction interfaces allows for the study of interfacial photoinduced charge-transfer states as a function of molecular structure. This analysis provides molecular-level insight into the factors governing charge generation at organic heterointerfaces and, thus, the efficiency of organic solar cells and other optoelectronic devices.","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":null,"pages":null},"PeriodicalIF":19.2000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic model interfaces for the study of intermolecular charge-transfer states\",\"authors\":\"\",\"doi\":\"10.1038/s41557-024-01579-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The synthesis of model heterojunction interfaces allows for the study of interfacial photoinduced charge-transfer states as a function of molecular structure. This analysis provides molecular-level insight into the factors governing charge generation at organic heterointerfaces and, thus, the efficiency of organic solar cells and other optoelectronic devices.\",\"PeriodicalId\":18909,\"journal\":{\"name\":\"Nature chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.2000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41557-024-01579-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41557-024-01579-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthetic model interfaces for the study of intermolecular charge-transfer states
The synthesis of model heterojunction interfaces allows for the study of interfacial photoinduced charge-transfer states as a function of molecular structure. This analysis provides molecular-level insight into the factors governing charge generation at organic heterointerfaces and, thus, the efficiency of organic solar cells and other optoelectronic devices.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.