卫生政策证据建设的统计数据整合

IF 7.4 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Susan M. Paddock, Carolina Franco, F. Jay Breidt, Brenda Betancourt
{"title":"卫生政策证据建设的统计数据整合","authors":"Susan M. Paddock, Carolina Franco, F. Jay Breidt, Brenda Betancourt","doi":"10.1146/annurev-statistics-112723-034507","DOIUrl":null,"url":null,"abstract":"Health policy evidence-building requires data sources such as health care claims, electronic health records, probability and nonprobability survey data, epidemiological surveillance databases, administrative data, and more, all of which have strengths and limitations for a given policy analysis. Data integration techniques leverage the relative strengths of input sources to obtain a blended source that is richer, more informative, and more fit for use than any single input component. This review notes the expansion of opportunities to use data integration for health policy analyses, reviews key methodological approaches to expand the number of variables in a data set or to increase the precision of estimates, and provides directions for future research. As data quality improvement motivates data integration, key data quality frameworks are provided to structure assessments of candidate input data sources.","PeriodicalId":48855,"journal":{"name":"Annual Review of Statistics and Its Application","volume":"135 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical Data Integration for Health Policy Evidence-Building\",\"authors\":\"Susan M. Paddock, Carolina Franco, F. Jay Breidt, Brenda Betancourt\",\"doi\":\"10.1146/annurev-statistics-112723-034507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Health policy evidence-building requires data sources such as health care claims, electronic health records, probability and nonprobability survey data, epidemiological surveillance databases, administrative data, and more, all of which have strengths and limitations for a given policy analysis. Data integration techniques leverage the relative strengths of input sources to obtain a blended source that is richer, more informative, and more fit for use than any single input component. This review notes the expansion of opportunities to use data integration for health policy analyses, reviews key methodological approaches to expand the number of variables in a data set or to increase the precision of estimates, and provides directions for future research. As data quality improvement motivates data integration, key data quality frameworks are provided to structure assessments of candidate input data sources.\",\"PeriodicalId\":48855,\"journal\":{\"name\":\"Annual Review of Statistics and Its Application\",\"volume\":\"135 1\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Statistics and Its Application\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-statistics-112723-034507\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Statistics and Its Application","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1146/annurev-statistics-112723-034507","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

卫生政策证据的建立需要数据源,如医疗索赔、电子健康记录、概率和非概率调查数据、流行病学监测数据库、行政管理数据等,所有这些数据对于特定的政策分析都有优势和局限性。数据整合技术可利用输入源的相对优势,获得比任何单一输入组件更丰富、更翔实、更适合使用的混合源。本综述注意到在卫生政策分析中使用数据整合的机会不断扩大,回顾了扩大数据集中变量数量或提高估算精度的主要方法,并为未来研究提供了方向。由于提高数据质量是数据整合的动力,因此提供了关键的数据质量框架,以构建对候选输入数据源的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Data Integration for Health Policy Evidence-Building
Health policy evidence-building requires data sources such as health care claims, electronic health records, probability and nonprobability survey data, epidemiological surveillance databases, administrative data, and more, all of which have strengths and limitations for a given policy analysis. Data integration techniques leverage the relative strengths of input sources to obtain a blended source that is richer, more informative, and more fit for use than any single input component. This review notes the expansion of opportunities to use data integration for health policy analyses, reviews key methodological approaches to expand the number of variables in a data set or to increase the precision of estimates, and provides directions for future research. As data quality improvement motivates data integration, key data quality frameworks are provided to structure assessments of candidate input data sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Statistics and Its Application
Annual Review of Statistics and Its Application MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
13.40
自引率
1.30%
发文量
29
期刊介绍: The Annual Review of Statistics and Its Application publishes comprehensive review articles focusing on methodological advancements in statistics and the utilization of computational tools facilitating these advancements. It is abstracted and indexed in Scopus, Science Citation Index Expanded, and Inspec.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信