{"title":"量子几何力学的复兴 I. 经典约束代数","authors":"Thorsten Lang and Susanne Schander","doi":"10.1088/1361-6382/ad41b1","DOIUrl":null,"url":null,"abstract":"In this series of papers, we present a set of methods to revive quantum geometrodynamics which encountered numerous mathematical and conceptual challenges in its original form promoted by Wheeler and De Witt. In this paper, we introduce the regularization scheme on which we base the subsequent quantization and continuum limit of the theory. Specifically, we employ the set of piecewise constant fields as the phase space of classical geometrodynamics, resulting in a theory with finitely many degrees of freedom of the spatial metric field. As this representation effectively corresponds to a lattice theory, we can utilize well-known techniques to depict the constraints and their algebra on the lattice. We are able to compute the lattice corrections to the constraint algebra. This model can now be quantized using the usual methods of finite-dimensional quantum mechanics, as we demonstrate in the following paper. The application of the continuum limit is the subject of a future publication.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum geometrodynamics revived I. Classical constraint algebra\",\"authors\":\"Thorsten Lang and Susanne Schander\",\"doi\":\"10.1088/1361-6382/ad41b1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this series of papers, we present a set of methods to revive quantum geometrodynamics which encountered numerous mathematical and conceptual challenges in its original form promoted by Wheeler and De Witt. In this paper, we introduce the regularization scheme on which we base the subsequent quantization and continuum limit of the theory. Specifically, we employ the set of piecewise constant fields as the phase space of classical geometrodynamics, resulting in a theory with finitely many degrees of freedom of the spatial metric field. As this representation effectively corresponds to a lattice theory, we can utilize well-known techniques to depict the constraints and their algebra on the lattice. We are able to compute the lattice corrections to the constraint algebra. This model can now be quantized using the usual methods of finite-dimensional quantum mechanics, as we demonstrate in the following paper. The application of the continuum limit is the subject of a future publication.\",\"PeriodicalId\":10282,\"journal\":{\"name\":\"Classical and Quantum Gravity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Classical and Quantum Gravity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6382/ad41b1\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad41b1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Quantum geometrodynamics revived I. Classical constraint algebra
In this series of papers, we present a set of methods to revive quantum geometrodynamics which encountered numerous mathematical and conceptual challenges in its original form promoted by Wheeler and De Witt. In this paper, we introduce the regularization scheme on which we base the subsequent quantization and continuum limit of the theory. Specifically, we employ the set of piecewise constant fields as the phase space of classical geometrodynamics, resulting in a theory with finitely many degrees of freedom of the spatial metric field. As this representation effectively corresponds to a lattice theory, we can utilize well-known techniques to depict the constraints and their algebra on the lattice. We are able to compute the lattice corrections to the constraint algebra. This model can now be quantized using the usual methods of finite-dimensional quantum mechanics, as we demonstrate in the following paper. The application of the continuum limit is the subject of a future publication.
期刊介绍:
Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.