{"title":"不依赖于辅激活剂的维生素 D 受体信号转导会导致小鼠严重佝偻病,但高钙、高磷酸盐和高乳糖饮食并不能阻止这种情况的发生","authors":"Stefanie Doms, Lieve Verlinden, Iris Janssens, Justine Vanhevel, Roy Eerlings, René Houtman, Shigeaki Kato, Chantal Mathieu, Brigitte Decallonne, Geert Carmeliet, Annemieke Verstuyf","doi":"10.1038/s41413-024-00343-7","DOIUrl":null,"url":null,"abstract":"<p>The vitamin D receptor (VDR) plays a critical role in the regulation of mineral and bone homeostasis. Upon binding of 1α,25-dihydroxyvitamin D<sub>3</sub> to the VDR, the activation function 2 (AF2) domain repositions and recruits coactivators for the assembly of the transcriptional machinery required for gene transcription. In contrast to coactivator-induced transcriptional activation, the functional effects of coactivator-independent VDR signaling remain unclear. In humans, mutations in the AF2 domain are associated with hereditary vitamin D-resistant rickets, a genetic disorder characterized by impaired bone mineralization and growth. In the present study, we used mice with a systemic or conditional deletion of the VDR-AF2 domain (<i>Vdr</i><sup><i>ΔAF2</i></sup>) to study coactivator-independent VDR signaling. We confirm that ligand-induced transcriptional activation was disabled because the mutant VDR<sup>ΔAF2</sup> protein was unable to interact with coactivators. Systemic <i>Vdr</i><sup><i>ΔAF2</i></sup> mice developed short, undermineralized bones with dysmorphic growth plates, a bone phenotype that was more pronounced than that of systemic <i>Vdr</i> knockout (<i>Vdr</i><sup><i>−/−</i></sup>) mice. Interestingly, a rescue diet that is high in calcium, phosphate, and lactose, normalized this phenotype in <i>Vdr</i><sup><i>−/−</i></sup>, but not in <i>Vdr</i><sup><i>ΔAF2</i></sup> mice. However, osteoblast- and osteoclast-specific <i>Vdr</i><sup><i>ΔAF2</i></sup> mice did not recapitulate this bone phenotype indicating coactivator-independent VDR effects are more important in other organs. In addition, RNA-sequencing analysis of duodenum and kidney revealed a decreased expression of VDR target genes in systemic <i>Vdr</i><sup><i>ΔAF2</i></sup> mice, which was not observed in <i>Vdr</i><sup><i>−/−</i></sup> mice. These genes could provide new insights in the compensatory (re)absorption of minerals that are crucial for bone homeostasis. In summary, coactivator-independent VDR effects contribute to mineral and bone homeostasis.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"38 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coactivator-independent vitamin D receptor signaling causes severe rickets in mice, that is not prevented by a diet high in calcium, phosphate, and lactose\",\"authors\":\"Stefanie Doms, Lieve Verlinden, Iris Janssens, Justine Vanhevel, Roy Eerlings, René Houtman, Shigeaki Kato, Chantal Mathieu, Brigitte Decallonne, Geert Carmeliet, Annemieke Verstuyf\",\"doi\":\"10.1038/s41413-024-00343-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The vitamin D receptor (VDR) plays a critical role in the regulation of mineral and bone homeostasis. Upon binding of 1α,25-dihydroxyvitamin D<sub>3</sub> to the VDR, the activation function 2 (AF2) domain repositions and recruits coactivators for the assembly of the transcriptional machinery required for gene transcription. In contrast to coactivator-induced transcriptional activation, the functional effects of coactivator-independent VDR signaling remain unclear. In humans, mutations in the AF2 domain are associated with hereditary vitamin D-resistant rickets, a genetic disorder characterized by impaired bone mineralization and growth. In the present study, we used mice with a systemic or conditional deletion of the VDR-AF2 domain (<i>Vdr</i><sup><i>ΔAF2</i></sup>) to study coactivator-independent VDR signaling. We confirm that ligand-induced transcriptional activation was disabled because the mutant VDR<sup>ΔAF2</sup> protein was unable to interact with coactivators. Systemic <i>Vdr</i><sup><i>ΔAF2</i></sup> mice developed short, undermineralized bones with dysmorphic growth plates, a bone phenotype that was more pronounced than that of systemic <i>Vdr</i> knockout (<i>Vdr</i><sup><i>−/−</i></sup>) mice. Interestingly, a rescue diet that is high in calcium, phosphate, and lactose, normalized this phenotype in <i>Vdr</i><sup><i>−/−</i></sup>, but not in <i>Vdr</i><sup><i>ΔAF2</i></sup> mice. However, osteoblast- and osteoclast-specific <i>Vdr</i><sup><i>ΔAF2</i></sup> mice did not recapitulate this bone phenotype indicating coactivator-independent VDR effects are more important in other organs. In addition, RNA-sequencing analysis of duodenum and kidney revealed a decreased expression of VDR target genes in systemic <i>Vdr</i><sup><i>ΔAF2</i></sup> mice, which was not observed in <i>Vdr</i><sup><i>−/−</i></sup> mice. These genes could provide new insights in the compensatory (re)absorption of minerals that are crucial for bone homeostasis. In summary, coactivator-independent VDR effects contribute to mineral and bone homeostasis.</p>\",\"PeriodicalId\":9134,\"journal\":{\"name\":\"Bone Research\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41413-024-00343-7\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-024-00343-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Coactivator-independent vitamin D receptor signaling causes severe rickets in mice, that is not prevented by a diet high in calcium, phosphate, and lactose
The vitamin D receptor (VDR) plays a critical role in the regulation of mineral and bone homeostasis. Upon binding of 1α,25-dihydroxyvitamin D3 to the VDR, the activation function 2 (AF2) domain repositions and recruits coactivators for the assembly of the transcriptional machinery required for gene transcription. In contrast to coactivator-induced transcriptional activation, the functional effects of coactivator-independent VDR signaling remain unclear. In humans, mutations in the AF2 domain are associated with hereditary vitamin D-resistant rickets, a genetic disorder characterized by impaired bone mineralization and growth. In the present study, we used mice with a systemic or conditional deletion of the VDR-AF2 domain (VdrΔAF2) to study coactivator-independent VDR signaling. We confirm that ligand-induced transcriptional activation was disabled because the mutant VDRΔAF2 protein was unable to interact with coactivators. Systemic VdrΔAF2 mice developed short, undermineralized bones with dysmorphic growth plates, a bone phenotype that was more pronounced than that of systemic Vdr knockout (Vdr−/−) mice. Interestingly, a rescue diet that is high in calcium, phosphate, and lactose, normalized this phenotype in Vdr−/−, but not in VdrΔAF2 mice. However, osteoblast- and osteoclast-specific VdrΔAF2 mice did not recapitulate this bone phenotype indicating coactivator-independent VDR effects are more important in other organs. In addition, RNA-sequencing analysis of duodenum and kidney revealed a decreased expression of VDR target genes in systemic VdrΔAF2 mice, which was not observed in Vdr−/− mice. These genes could provide new insights in the compensatory (re)absorption of minerals that are crucial for bone homeostasis. In summary, coactivator-independent VDR effects contribute to mineral and bone homeostasis.
期刊介绍:
Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.