死亡率项有微小延迟的尼科尔森吹蝇微分方程

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Leonid Berezansky , Elena Braverman
{"title":"死亡率项有微小延迟的尼科尔森吹蝇微分方程","authors":"Leonid Berezansky ,&nbsp;Elena Braverman","doi":"10.1016/j.nonrwa.2024.104193","DOIUrl":null,"url":null,"abstract":"<div><p>For the Nicholson’s blowflies equation with delayed mortality <span><span><span><math><mrow><msup><mrow><mi>N</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>m</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mfenced><mrow><mo>−</mo><mi>δ</mi><mi>N</mi><mrow><mo>(</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mi>P</mi><mi>N</mi><mrow><mo>(</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>γ</mi><mi>N</mi><mrow><mo>(</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></msup></mrow></mfenced><mo>,</mo><mspace></mspace><mi>P</mi><mo>&gt;</mo><mi>δ</mi><mo>,</mo></mrow></math></span></span></span>positivity, persistence, and boundedness of solutions are established. Two global stability tests for the positive equilibrium are obtained based on <em>a linearized global stability method</em>, reducing stability of a non-linear model to a specially constructed linear equation. The first one extends the absolute stability result to the case of delayed mortality and the second test is delay-dependent.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"81 ","pages":"Article 104193"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824001329/pdfft?md5=10a34860ec386ab5968c581d56cb04d0&pid=1-s2.0-S1468121824001329-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nicholson’s blowflies differential equations with a small delay in the mortality term\",\"authors\":\"Leonid Berezansky ,&nbsp;Elena Braverman\",\"doi\":\"10.1016/j.nonrwa.2024.104193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For the Nicholson’s blowflies equation with delayed mortality <span><span><span><math><mrow><msup><mrow><mi>N</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>m</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mfenced><mrow><mo>−</mo><mi>δ</mi><mi>N</mi><mrow><mo>(</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mi>P</mi><mi>N</mi><mrow><mo>(</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>γ</mi><mi>N</mi><mrow><mo>(</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></msup></mrow></mfenced><mo>,</mo><mspace></mspace><mi>P</mi><mo>&gt;</mo><mi>δ</mi><mo>,</mo></mrow></math></span></span></span>positivity, persistence, and boundedness of solutions are established. Two global stability tests for the positive equilibrium are obtained based on <em>a linearized global stability method</em>, reducing stability of a non-linear model to a specially constructed linear equation. The first one extends the absolute stability result to the case of delayed mortality and the second test is delay-dependent.</p></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"81 \",\"pages\":\"Article 104193\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1468121824001329/pdfft?md5=10a34860ec386ab5968c581d56cb04d0&pid=1-s2.0-S1468121824001329-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824001329\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001329","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

对于具有延迟死亡率的尼科尔森吹蝇方程 N′(t)=m(t)-δN(h1(t))+PN(h2(t))e-γN(h2(t)),P>δ,建立了解的正向性、持久性和有界性。基于线性化全局稳定性方法,将非线性模型的稳定性简化为专门构建的线性方程,得到了正平衡的两个全局稳定性检验。第一个检验将绝对稳定性结果扩展到延迟死亡的情况,第二个检验与延迟相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nicholson’s blowflies differential equations with a small delay in the mortality term

For the Nicholson’s blowflies equation with delayed mortality N(t)=m(t)δN(h1(t))+PN(h2(t))eγN(h2(t)),P>δ,positivity, persistence, and boundedness of solutions are established. Two global stability tests for the positive equilibrium are obtained based on a linearized global stability method, reducing stability of a non-linear model to a specially constructed linear equation. The first one extends the absolute stability result to the case of delayed mortality and the second test is delay-dependent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信