{"title":"由可数维维纳过程和泊松随机测量驱动的随机微分方程的多级蒙特卡洛算法","authors":"Michał Sobieraj","doi":"10.1016/j.apnum.2024.08.007","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate properties of standard and multilevel Monte Carlo methods for weak approximation of solutions of stochastic differential equations (SDEs) driven by infinite-dimensional Wiener process and Poisson random measure with Lipschitz payoff function. The error of the truncated dimension randomized numerical scheme, which depends on two parameters i.e., grid density <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span> and truncation dimension parameter <span><math><mi>M</mi><mo>∈</mo><mi>N</mi></math></span>, is of the order <span><math><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>+</mo><mi>δ</mi><mo>(</mo><mi>M</mi><mo>)</mo></math></span> such that <span><math><mi>δ</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> is positive and decreasing to 0. We derive a complexity model and provide proof for the complexity upper bound of the multilevel Monte Carlo method which depends on two increasing sequences of parameters for both <em>n</em> and <em>M</em>. The complexity is measured in terms of upper bound for mean-squared error and is compared with the complexity of the standard Monte Carlo algorithm. The results from numerical experiments as well as Python and CUDA C implementation details are also reported.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multilevel Monte Carlo algorithm for stochastic differential equations driven by countably dimensional Wiener process and Poisson random measure\",\"authors\":\"Michał Sobieraj\",\"doi\":\"10.1016/j.apnum.2024.08.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we investigate properties of standard and multilevel Monte Carlo methods for weak approximation of solutions of stochastic differential equations (SDEs) driven by infinite-dimensional Wiener process and Poisson random measure with Lipschitz payoff function. The error of the truncated dimension randomized numerical scheme, which depends on two parameters i.e., grid density <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span> and truncation dimension parameter <span><math><mi>M</mi><mo>∈</mo><mi>N</mi></math></span>, is of the order <span><math><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>+</mo><mi>δ</mi><mo>(</mo><mi>M</mi><mo>)</mo></math></span> such that <span><math><mi>δ</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> is positive and decreasing to 0. We derive a complexity model and provide proof for the complexity upper bound of the multilevel Monte Carlo method which depends on two increasing sequences of parameters for both <em>n</em> and <em>M</em>. The complexity is measured in terms of upper bound for mean-squared error and is compared with the complexity of the standard Monte Carlo algorithm. The results from numerical experiments as well as Python and CUDA C implementation details are also reported.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了标准蒙特卡罗方法和多级蒙特卡罗方法的特性,这些方法用于弱逼近由无限维维纳过程和具有 Lipschitz 付酬函数的泊松随机度量驱动的随机微分方程(SDE)的解。截断维随机数值方案的误差取决于两个参数,即我们推导了一个复杂度模型,并证明了多级蒙特卡罗方法的复杂度上限,该方法取决于 n 和 M 的两个递增参数序列。此外,还报告了数值实验结果以及 Python 和 CUDA C 语言的实现细节。
A multilevel Monte Carlo algorithm for stochastic differential equations driven by countably dimensional Wiener process and Poisson random measure
In this paper, we investigate properties of standard and multilevel Monte Carlo methods for weak approximation of solutions of stochastic differential equations (SDEs) driven by infinite-dimensional Wiener process and Poisson random measure with Lipschitz payoff function. The error of the truncated dimension randomized numerical scheme, which depends on two parameters i.e., grid density and truncation dimension parameter , is of the order such that is positive and decreasing to 0. We derive a complexity model and provide proof for the complexity upper bound of the multilevel Monte Carlo method which depends on two increasing sequences of parameters for both n and M. The complexity is measured in terms of upper bound for mean-squared error and is compared with the complexity of the standard Monte Carlo algorithm. The results from numerical experiments as well as Python and CUDA C implementation details are also reported.