{"title":"利用重力参考方法为云辅助边缘计算中的混合计算卸载提供故障感知资源配置","authors":"Mustafa Ibrahim Khaleel","doi":"10.1016/j.swevo.2024.101704","DOIUrl":null,"url":null,"abstract":"<div><p>This paper tackles the challenges of computation offloading in the cloud–edge paradigm. Although many solutions exist for enhancing the server’s computational and communication efficiency, they mainly focus on reducing latency and often neglect the impact of overlapping multi-request processing on scheduling reliability. Additionally, these approaches do not account for the preemptive characteristics of applications running in the VMs that lead to higher energy consumption. We propose a novel hybrid integer multi-objective dynamic decision-making approach enhanced with the gravity reference point method. This method determines the proportion of computations executed on cloud servers versus those handled locally on edge servers. Our hybrid approach leverages the gravitational potential reference point and crowding degrees to improve the characteristics of whale populations, addressing the limitations of the traditional whale algorithm, which depends on individual whales’ varying foraging behaviors influenced by a random probability number. By evaluating the crowding level around the prey, the foraging behavior of individual whales is adjusted to enhance the algorithm’s convergence speed and optimization accuracy, thereby increasing its reliability. The results show that our hybrid computation offloading model significantly improves time latency by 76.45%, energy efficiency by 63.12%, reliability by 82%, quality of service by 83.78%, distributor throughput by 87.31%, asset availability by 73.05%, and guarantee ratio by 89.72% compared to traditional offloading methods.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"91 ","pages":"Article 101704"},"PeriodicalIF":8.2000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Failure-aware resource provisioning for hybrid computation offloading in cloud-assisted edge computing using gravity reference approach\",\"authors\":\"Mustafa Ibrahim Khaleel\",\"doi\":\"10.1016/j.swevo.2024.101704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper tackles the challenges of computation offloading in the cloud–edge paradigm. Although many solutions exist for enhancing the server’s computational and communication efficiency, they mainly focus on reducing latency and often neglect the impact of overlapping multi-request processing on scheduling reliability. Additionally, these approaches do not account for the preemptive characteristics of applications running in the VMs that lead to higher energy consumption. We propose a novel hybrid integer multi-objective dynamic decision-making approach enhanced with the gravity reference point method. This method determines the proportion of computations executed on cloud servers versus those handled locally on edge servers. Our hybrid approach leverages the gravitational potential reference point and crowding degrees to improve the characteristics of whale populations, addressing the limitations of the traditional whale algorithm, which depends on individual whales’ varying foraging behaviors influenced by a random probability number. By evaluating the crowding level around the prey, the foraging behavior of individual whales is adjusted to enhance the algorithm’s convergence speed and optimization accuracy, thereby increasing its reliability. The results show that our hybrid computation offloading model significantly improves time latency by 76.45%, energy efficiency by 63.12%, reliability by 82%, quality of service by 83.78%, distributor throughput by 87.31%, asset availability by 73.05%, and guarantee ratio by 89.72% compared to traditional offloading methods.</p></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"91 \",\"pages\":\"Article 101704\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210650224002426\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002426","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Failure-aware resource provisioning for hybrid computation offloading in cloud-assisted edge computing using gravity reference approach
This paper tackles the challenges of computation offloading in the cloud–edge paradigm. Although many solutions exist for enhancing the server’s computational and communication efficiency, they mainly focus on reducing latency and often neglect the impact of overlapping multi-request processing on scheduling reliability. Additionally, these approaches do not account for the preemptive characteristics of applications running in the VMs that lead to higher energy consumption. We propose a novel hybrid integer multi-objective dynamic decision-making approach enhanced with the gravity reference point method. This method determines the proportion of computations executed on cloud servers versus those handled locally on edge servers. Our hybrid approach leverages the gravitational potential reference point and crowding degrees to improve the characteristics of whale populations, addressing the limitations of the traditional whale algorithm, which depends on individual whales’ varying foraging behaviors influenced by a random probability number. By evaluating the crowding level around the prey, the foraging behavior of individual whales is adjusted to enhance the algorithm’s convergence speed and optimization accuracy, thereby increasing its reliability. The results show that our hybrid computation offloading model significantly improves time latency by 76.45%, energy efficiency by 63.12%, reliability by 82%, quality of service by 83.78%, distributor throughput by 87.31%, asset availability by 73.05%, and guarantee ratio by 89.72% compared to traditional offloading methods.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.