超图中一般星形林的图兰数

IF 0.7 3区 数学 Q2 MATHEMATICS
Lin-Peng Zhang , Hajo Broersma , Ligong Wang
{"title":"超图中一般星形林的图兰数","authors":"Lin-Peng Zhang ,&nbsp;Hajo Broersma ,&nbsp;Ligong Wang","doi":"10.1016/j.disc.2024.114219","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>F</mi></math></span> be a family of <em>r</em>-uniform hypergraphs, and let <em>H</em> be an <em>r</em>-uniform hypergraph. Then <em>H</em> is called <span><math><mi>F</mi></math></span>-free if it does not contain any member of <span><math><mi>F</mi></math></span> as a subhypergraph. The Turán number of <span><math><mi>F</mi></math></span>, denoted by <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>, is the maximum number of hyperedges in an <span><math><mi>F</mi></math></span>-free <em>n</em>-vertex <em>r</em>-uniform hypergraph. Our current results are motivated by earlier results on Turán numbers of star forests and hypergraph star forests. In particular, Lidický et al. (2013) <span><span>[17]</span></span> determined the Turán number <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> of a star forest <em>F</em> for sufficiently large <em>n</em>. Recently, Khormali and Palmer (2022) <span><span>[13]</span></span> generalized the above result to three different well-studied hypergraph settings (the expansions of a graph, linear hypergraphs and Berge hypergraphs), but restricted to the case that all stars in the hypergraph star forests are identical. We further generalize these results to general star forests in hypergraphs.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114219"},"PeriodicalIF":0.7000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003509/pdfft?md5=f55a8417dd66a400951a48477694c9f9&pid=1-s2.0-S0012365X24003509-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Turán numbers of general star forests in hypergraphs\",\"authors\":\"Lin-Peng Zhang ,&nbsp;Hajo Broersma ,&nbsp;Ligong Wang\",\"doi\":\"10.1016/j.disc.2024.114219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>F</mi></math></span> be a family of <em>r</em>-uniform hypergraphs, and let <em>H</em> be an <em>r</em>-uniform hypergraph. Then <em>H</em> is called <span><math><mi>F</mi></math></span>-free if it does not contain any member of <span><math><mi>F</mi></math></span> as a subhypergraph. The Turán number of <span><math><mi>F</mi></math></span>, denoted by <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>, is the maximum number of hyperedges in an <span><math><mi>F</mi></math></span>-free <em>n</em>-vertex <em>r</em>-uniform hypergraph. Our current results are motivated by earlier results on Turán numbers of star forests and hypergraph star forests. In particular, Lidický et al. (2013) <span><span>[17]</span></span> determined the Turán number <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> of a star forest <em>F</em> for sufficiently large <em>n</em>. Recently, Khormali and Palmer (2022) <span><span>[13]</span></span> generalized the above result to three different well-studied hypergraph settings (the expansions of a graph, linear hypergraphs and Berge hypergraphs), but restricted to the case that all stars in the hypergraph star forests are identical. We further generalize these results to general star forests in hypergraphs.</p></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 1\",\"pages\":\"Article 114219\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003509/pdfft?md5=f55a8417dd66a400951a48477694c9f9&pid=1-s2.0-S0012365X24003509-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003509\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003509","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 F 是一个 r-Uniform 超图族,设 H 是一个 r-Uniform 超图。如果 H 的子超图不包含 F 的任何成员,则称 H 为无 F 超图。F 的图兰数(用 exr(n,F) 表示)是无 F n 顶点 r-uniform 超图中超图的最大数目。我们目前的结果是受早先关于星形森林和超图星形森林的图兰数结果的启发。最近,Khormali 和 Palmer(2022 年)[13] 将上述结果推广到三种不同的、研究得很透彻的超图环境(图的展开、线性超图和 Berge 超图),但仅限于超图星形林中所有星形都相同的情况。我们将这些结果进一步推广到超图中的一般星形林。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Turán numbers of general star forests in hypergraphs

Let F be a family of r-uniform hypergraphs, and let H be an r-uniform hypergraph. Then H is called F-free if it does not contain any member of F as a subhypergraph. The Turán number of F, denoted by exr(n,F), is the maximum number of hyperedges in an F-free n-vertex r-uniform hypergraph. Our current results are motivated by earlier results on Turán numbers of star forests and hypergraph star forests. In particular, Lidický et al. (2013) [17] determined the Turán number ex(n,F) of a star forest F for sufficiently large n. Recently, Khormali and Palmer (2022) [13] generalized the above result to three different well-studied hypergraph settings (the expansions of a graph, linear hypergraphs and Berge hypergraphs), but restricted to the case that all stars in the hypergraph star forests are identical. We further generalize these results to general star forests in hypergraphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信