重新评估地球下地幔中俯冲菱镁矿的命运

IF 2.4 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Lélia Libon , Georg Spiekermann , Ingrid Blanchard , Johannes M. Kaa , Serena Dominijanni , Melanie J. Sieber , Mirko Förster , Christian Albers , Wolfgang Morgenroth , Catherine McCammon , Anja Schreiber , Vladimir Roddatis , Konstantin Glazyrin , Rachel J. Husband , Louis Hennet , Karen Appel , Max Wilke
{"title":"重新评估地球下地幔中俯冲菱镁矿的命运","authors":"Lélia Libon ,&nbsp;Georg Spiekermann ,&nbsp;Ingrid Blanchard ,&nbsp;Johannes M. Kaa ,&nbsp;Serena Dominijanni ,&nbsp;Melanie J. Sieber ,&nbsp;Mirko Förster ,&nbsp;Christian Albers ,&nbsp;Wolfgang Morgenroth ,&nbsp;Catherine McCammon ,&nbsp;Anja Schreiber ,&nbsp;Vladimir Roddatis ,&nbsp;Konstantin Glazyrin ,&nbsp;Rachel J. Husband ,&nbsp;Louis Hennet ,&nbsp;Karen Appel ,&nbsp;Max Wilke","doi":"10.1016/j.pepi.2024.107238","DOIUrl":null,"url":null,"abstract":"<div><p>The role that subducted carbonates play in sourcing and storing carbon in the deep Earth's interior is uncertain, primarily due to poor constraints on the stability of carbonate minerals when interacting with mantle phases. Magnesite (<span><math><msub><mtext>MgCO</mtext><mn>3</mn></msub></math></span>) is the most prominent carbonate phase to be present at all mantle pressure-temperature conditions. In this study, we combined multi-anvil apparatus and laser-heated diamond anvil cell experiments to investigate the stability of magnesite in contact with iron-bearing bridgmanite. We examined the presence of melt, decarbonation, and diamond formation at shallow to mid-lower mantle conditions (25 to 68 GPa; 1350 to 2000 K). Our main observation indicates that magnesite is not stable at shallow lower mantle conditions. At 25 GPa and under oxidizing conditions, melting of magnesite is observed in multi-anvil experiments at temperatures corresponding to all geotherms except the coldest ones. Whereas, at higher pressures and under reducing conditions, in our laser-heated diamond-anvil cell experiments, diamond nucleation is observed as a sub-solidus process even at temperatures relevant to the coldest slab geotherms. Our results indicate that magnesite was reduced and formed diamonds when in contact with the ambient peridotite mantle at depths corresponding to the shallowest lower mantle (33 GPa). Thus, we establish that solid magnesite decomposes at depths of ∼700 km as it contacts the ambient mantle. Consequently, the recycling of carbonates will hinder their transport deeper into the lower mantle.</p></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"355 ","pages":"Article 107238"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reevaluating the fate of subducted magnesite in the Earth's lower mantle\",\"authors\":\"Lélia Libon ,&nbsp;Georg Spiekermann ,&nbsp;Ingrid Blanchard ,&nbsp;Johannes M. Kaa ,&nbsp;Serena Dominijanni ,&nbsp;Melanie J. Sieber ,&nbsp;Mirko Förster ,&nbsp;Christian Albers ,&nbsp;Wolfgang Morgenroth ,&nbsp;Catherine McCammon ,&nbsp;Anja Schreiber ,&nbsp;Vladimir Roddatis ,&nbsp;Konstantin Glazyrin ,&nbsp;Rachel J. Husband ,&nbsp;Louis Hennet ,&nbsp;Karen Appel ,&nbsp;Max Wilke\",\"doi\":\"10.1016/j.pepi.2024.107238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The role that subducted carbonates play in sourcing and storing carbon in the deep Earth's interior is uncertain, primarily due to poor constraints on the stability of carbonate minerals when interacting with mantle phases. Magnesite (<span><math><msub><mtext>MgCO</mtext><mn>3</mn></msub></math></span>) is the most prominent carbonate phase to be present at all mantle pressure-temperature conditions. In this study, we combined multi-anvil apparatus and laser-heated diamond anvil cell experiments to investigate the stability of magnesite in contact with iron-bearing bridgmanite. We examined the presence of melt, decarbonation, and diamond formation at shallow to mid-lower mantle conditions (25 to 68 GPa; 1350 to 2000 K). Our main observation indicates that magnesite is not stable at shallow lower mantle conditions. At 25 GPa and under oxidizing conditions, melting of magnesite is observed in multi-anvil experiments at temperatures corresponding to all geotherms except the coldest ones. Whereas, at higher pressures and under reducing conditions, in our laser-heated diamond-anvil cell experiments, diamond nucleation is observed as a sub-solidus process even at temperatures relevant to the coldest slab geotherms. Our results indicate that magnesite was reduced and formed diamonds when in contact with the ambient peridotite mantle at depths corresponding to the shallowest lower mantle (33 GPa). Thus, we establish that solid magnesite decomposes at depths of ∼700 km as it contacts the ambient mantle. Consequently, the recycling of carbonates will hinder their transport deeper into the lower mantle.</p></div>\",\"PeriodicalId\":54614,\"journal\":{\"name\":\"Physics of the Earth and Planetary Interiors\",\"volume\":\"355 \",\"pages\":\"Article 107238\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Earth and Planetary Interiors\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031920124000967\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Earth and Planetary Interiors","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031920124000967","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

俯冲碳酸盐在地球深部内部碳的来源和储存方面所起的作用尚不确定,这主要是由于碳酸盐矿物与地幔相相互作用时的稳定性制约因素较少。菱镁矿(MgCO3)是在所有地幔压力-温度条件下都存在的最突出的碳酸盐相。在这项研究中,我们结合了多砧仪器和激光加热金刚石砧池实验,研究了菱镁矿与含铁桥芒石接触时的稳定性。我们考察了地幔浅层至中低层条件(25 至 68 GPa; 1350 至 2000 K)下熔体的存在、脱碳和金刚石的形成。我们的主要观察结果表明,菱镁矿在浅层下地幔条件下并不稳定。在 25 GPa 和氧化条件下,在多砧实验中观察到菱镁矿在除最冷地温外的所有地温下熔化。而在较高压力和还原条件下,在我们的激光加热金刚石振荡池实验中,即使在与最冷板块地温相关的温度下,也能观察到金刚石成核是一个亚固结过程。我们的结果表明,当菱镁矿与环境橄榄岩地幔接触时,在相当于最浅下地幔(33 GPa)的深度,菱镁矿被还原并形成金刚石。因此,我们确定固体菱镁矿在与环境地幔接触时,会在∼700千米深处分解。因此,碳酸盐的循环将阻碍它们向更深的下地幔运移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reevaluating the fate of subducted magnesite in the Earth's lower mantle

Reevaluating the fate of subducted magnesite in the Earth's lower mantle

The role that subducted carbonates play in sourcing and storing carbon in the deep Earth's interior is uncertain, primarily due to poor constraints on the stability of carbonate minerals when interacting with mantle phases. Magnesite (MgCO3) is the most prominent carbonate phase to be present at all mantle pressure-temperature conditions. In this study, we combined multi-anvil apparatus and laser-heated diamond anvil cell experiments to investigate the stability of magnesite in contact with iron-bearing bridgmanite. We examined the presence of melt, decarbonation, and diamond formation at shallow to mid-lower mantle conditions (25 to 68 GPa; 1350 to 2000 K). Our main observation indicates that magnesite is not stable at shallow lower mantle conditions. At 25 GPa and under oxidizing conditions, melting of magnesite is observed in multi-anvil experiments at temperatures corresponding to all geotherms except the coldest ones. Whereas, at higher pressures and under reducing conditions, in our laser-heated diamond-anvil cell experiments, diamond nucleation is observed as a sub-solidus process even at temperatures relevant to the coldest slab geotherms. Our results indicate that magnesite was reduced and formed diamonds when in contact with the ambient peridotite mantle at depths corresponding to the shallowest lower mantle (33 GPa). Thus, we establish that solid magnesite decomposes at depths of ∼700 km as it contacts the ambient mantle. Consequently, the recycling of carbonates will hinder their transport deeper into the lower mantle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of the Earth and Planetary Interiors
Physics of the Earth and Planetary Interiors 地学天文-地球化学与地球物理
CiteScore
5.00
自引率
4.30%
发文量
78
审稿时长
18.5 weeks
期刊介绍: Launched in 1968 to fill the need for an international journal in the field of planetary physics, geodesy and geophysics, Physics of the Earth and Planetary Interiors has now grown to become important reading matter for all geophysicists. It is the only journal to be entirely devoted to the physical and chemical processes of planetary interiors. Original research papers, review articles, short communications and book reviews are all published on a regular basis; and from time to time special issues of the journal are devoted to the publication of the proceedings of symposia and congresses which the editors feel will be of particular interest to the reader.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信