{"title":"I-I 和 E-I 网络中伽马振荡的触发率模型。","authors":"Yiqing Lu, John Rinzel","doi":"10.1007/s10827-024-00877-z","DOIUrl":null,"url":null,"abstract":"<p><p>Firing rate models for describing the mean-field activities of neuronal ensembles can be used effectively to study network function and dynamics, including synchronization and rhythmicity of excitatory-inhibitory populations. However, traditional Wilson-Cowan-like models, even when extended to include an explicit dynamic synaptic activation variable, are found unable to capture some dynamics such as Interneuronal Network Gamma oscillations (ING). Use of an explicit delay is helpful in simulations at the expense of complicating mathematical analysis. We resolve this issue by introducing a dynamic variable, u, that acts as an effective delay in the negative feedback loop between firing rate (r) and synaptic gating of inhibition (s). In effect, u endows synaptic activation with second order dynamics. With linear stability analysis, numerical branch-tracking and simulations, we show that our r-u-s rate model captures some key qualitative features of spiking network models for ING. We also propose an alternative formulation, a v-u-s model, in which mean membrane potential v satisfies an averaged current-balance equation. Furthermore, we extend the framework to E-I networks. With our six-variable v-u-s model, we demonstrate in firing rate models the transition from Pyramidal-Interneuronal Network Gamma (PING) to ING by increasing the external drive to the inhibitory population without adjusting synaptic weights. Having PING and ING available in a single network, without invoking synaptic blockers, is plausible and natural for explaining the emergence and transition of two different types of gamma oscillations.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":" ","pages":"247-266"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Firing rate models for gamma oscillations in I-I and E-I networks.\",\"authors\":\"Yiqing Lu, John Rinzel\",\"doi\":\"10.1007/s10827-024-00877-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Firing rate models for describing the mean-field activities of neuronal ensembles can be used effectively to study network function and dynamics, including synchronization and rhythmicity of excitatory-inhibitory populations. However, traditional Wilson-Cowan-like models, even when extended to include an explicit dynamic synaptic activation variable, are found unable to capture some dynamics such as Interneuronal Network Gamma oscillations (ING). Use of an explicit delay is helpful in simulations at the expense of complicating mathematical analysis. We resolve this issue by introducing a dynamic variable, u, that acts as an effective delay in the negative feedback loop between firing rate (r) and synaptic gating of inhibition (s). In effect, u endows synaptic activation with second order dynamics. With linear stability analysis, numerical branch-tracking and simulations, we show that our r-u-s rate model captures some key qualitative features of spiking network models for ING. We also propose an alternative formulation, a v-u-s model, in which mean membrane potential v satisfies an averaged current-balance equation. Furthermore, we extend the framework to E-I networks. With our six-variable v-u-s model, we demonstrate in firing rate models the transition from Pyramidal-Interneuronal Network Gamma (PING) to ING by increasing the external drive to the inhibitory population without adjusting synaptic weights. Having PING and ING available in a single network, without invoking synaptic blockers, is plausible and natural for explaining the emergence and transition of two different types of gamma oscillations.</p>\",\"PeriodicalId\":54857,\"journal\":{\"name\":\"Journal of Computational Neuroscience\",\"volume\":\" \",\"pages\":\"247-266\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10827-024-00877-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10827-024-00877-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
描述神经元集合平均场活动的射频模型可以有效地用于研究网络功能和动力学,包括兴奋-抑制群的同步性和节律性。然而,传统的威尔逊-考文(Wilson-Cowan)类模型,即使扩展到包括明确的动态突触激活变量,也无法捕捉某些动态,如神经元网络伽马振荡(ING)。使用显式延迟有助于模拟,但会使数学分析复杂化。为了解决这个问题,我们引入了一个动态变量 u,作为发射率(r)和抑制突触门控(s)之间负反馈回路的有效延迟。实际上,u 使突触激活具有二阶动态特性。通过线性稳定性分析、数值分支跟踪和模拟,我们证明了我们的 r-u-s 速率模型捕捉到了 ING 尖峰网络模型的一些关键定性特征。我们还提出了一种替代方案,即 v-u-s 模型,其中平均膜电位 v 满足平均电流平衡方程。此外,我们还将该框架扩展到了 E-I 网络。利用我们的六变量 v-u-s 模型,我们在发射率模型中演示了通过增加抑制群体的外部驱动力而不调整突触权重,从锥体-互瘤网络伽马(PING)向ING 过渡的过程。在不使用突触阻滞剂的情况下,PING 和 ING 可在单个网络中使用,这对于解释两种不同类型伽马振荡的出现和过渡是合理和自然的。
Firing rate models for gamma oscillations in I-I and E-I networks.
Firing rate models for describing the mean-field activities of neuronal ensembles can be used effectively to study network function and dynamics, including synchronization and rhythmicity of excitatory-inhibitory populations. However, traditional Wilson-Cowan-like models, even when extended to include an explicit dynamic synaptic activation variable, are found unable to capture some dynamics such as Interneuronal Network Gamma oscillations (ING). Use of an explicit delay is helpful in simulations at the expense of complicating mathematical analysis. We resolve this issue by introducing a dynamic variable, u, that acts as an effective delay in the negative feedback loop between firing rate (r) and synaptic gating of inhibition (s). In effect, u endows synaptic activation with second order dynamics. With linear stability analysis, numerical branch-tracking and simulations, we show that our r-u-s rate model captures some key qualitative features of spiking network models for ING. We also propose an alternative formulation, a v-u-s model, in which mean membrane potential v satisfies an averaged current-balance equation. Furthermore, we extend the framework to E-I networks. With our six-variable v-u-s model, we demonstrate in firing rate models the transition from Pyramidal-Interneuronal Network Gamma (PING) to ING by increasing the external drive to the inhibitory population without adjusting synaptic weights. Having PING and ING available in a single network, without invoking synaptic blockers, is plausible and natural for explaining the emergence and transition of two different types of gamma oscillations.
期刊介绍:
The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods yielding insights into the function of the nervous system, are also welcomed (in this case, methodological papers should include an application of the new method, exemplifying the insights that it yields).It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience.