Benoit Allard, Olga Ousova, Zhanna Savitskaya, Hannah Levardon, Elise Maurat, Marilyne Campagnac, Thomas Trian, Patrick Berger
{"title":"哮喘小鼠肺部对重复多聚(I:C)暴露的适应性受损:一项观察性研究。","authors":"Benoit Allard, Olga Ousova, Zhanna Savitskaya, Hannah Levardon, Elise Maurat, Marilyne Campagnac, Thomas Trian, Patrick Berger","doi":"10.1186/s12931-024-02948-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>While asthma exacerbations remain a major challenge in patient management, few animal models exist to explore the underlying mechanisms. Here, we established an animal model of asthma that can be used to study pathophysiological mechanisms and therapeutic strategies on asthma exacerbation.</p><p><strong>Methods: </strong>Female BALB/c mice were sensitized and exposed to PBS or Dermatophagoides pteronyssinus (DerP) extract for 11 weeks. Asthmatic phenotype was assessed through lung inflammation, bronchial hyperresponsiveness and bronchial smooth muscle remodeling. Asthmatic and control mice were exposed once or three times to poly(I:C) to simulate virus-induced inflammation.</p><p><strong>Results: </strong>Fourteen days after exposure to DerP, asthmatic mice showed resolution of inflammation with sustained bronchial hyperresponsiveness and bronchial smooth muscle remodeling compared to control. At this stage, when mice were subjected to a single exposure to poly(I:C), control and asthmatic mice were characterized by a significant increase in neutrophilic inflammation and bronchial hyperresponsiveness. When mice were repeatedly exposed to poly(I:C), control mice showed a significant decrease in neutrophilic inflammation and bronchial hyperresponsiveness, while asthmatic mice experienced worsening of these outcomes.</p><p><strong>Conclusions: </strong>This observational study report an asthmatic mouse model that can undergo exacerbation after repeated exposure to poly(I:C). Our findings on pulmonary adaptation in control mice may also pave the way for further research into the mechanism of adaptation that may be impaired in asthma and raise the question of whether asthma exacerbation may be a loss of adaptation.</p>","PeriodicalId":49131,"journal":{"name":"Respiratory Research","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334391/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pulmonary adaptation to repeated poly(I:C) exposure is impaired in asthmatic mice: an observational study.\",\"authors\":\"Benoit Allard, Olga Ousova, Zhanna Savitskaya, Hannah Levardon, Elise Maurat, Marilyne Campagnac, Thomas Trian, Patrick Berger\",\"doi\":\"10.1186/s12931-024-02948-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>While asthma exacerbations remain a major challenge in patient management, few animal models exist to explore the underlying mechanisms. Here, we established an animal model of asthma that can be used to study pathophysiological mechanisms and therapeutic strategies on asthma exacerbation.</p><p><strong>Methods: </strong>Female BALB/c mice were sensitized and exposed to PBS or Dermatophagoides pteronyssinus (DerP) extract for 11 weeks. Asthmatic phenotype was assessed through lung inflammation, bronchial hyperresponsiveness and bronchial smooth muscle remodeling. Asthmatic and control mice were exposed once or three times to poly(I:C) to simulate virus-induced inflammation.</p><p><strong>Results: </strong>Fourteen days after exposure to DerP, asthmatic mice showed resolution of inflammation with sustained bronchial hyperresponsiveness and bronchial smooth muscle remodeling compared to control. At this stage, when mice were subjected to a single exposure to poly(I:C), control and asthmatic mice were characterized by a significant increase in neutrophilic inflammation and bronchial hyperresponsiveness. When mice were repeatedly exposed to poly(I:C), control mice showed a significant decrease in neutrophilic inflammation and bronchial hyperresponsiveness, while asthmatic mice experienced worsening of these outcomes.</p><p><strong>Conclusions: </strong>This observational study report an asthmatic mouse model that can undergo exacerbation after repeated exposure to poly(I:C). Our findings on pulmonary adaptation in control mice may also pave the way for further research into the mechanism of adaptation that may be impaired in asthma and raise the question of whether asthma exacerbation may be a loss of adaptation.</p>\",\"PeriodicalId\":49131,\"journal\":{\"name\":\"Respiratory Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334391/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Respiratory Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12931-024-02948-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12931-024-02948-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Pulmonary adaptation to repeated poly(I:C) exposure is impaired in asthmatic mice: an observational study.
Background: While asthma exacerbations remain a major challenge in patient management, few animal models exist to explore the underlying mechanisms. Here, we established an animal model of asthma that can be used to study pathophysiological mechanisms and therapeutic strategies on asthma exacerbation.
Methods: Female BALB/c mice were sensitized and exposed to PBS or Dermatophagoides pteronyssinus (DerP) extract for 11 weeks. Asthmatic phenotype was assessed through lung inflammation, bronchial hyperresponsiveness and bronchial smooth muscle remodeling. Asthmatic and control mice were exposed once or three times to poly(I:C) to simulate virus-induced inflammation.
Results: Fourteen days after exposure to DerP, asthmatic mice showed resolution of inflammation with sustained bronchial hyperresponsiveness and bronchial smooth muscle remodeling compared to control. At this stage, when mice were subjected to a single exposure to poly(I:C), control and asthmatic mice were characterized by a significant increase in neutrophilic inflammation and bronchial hyperresponsiveness. When mice were repeatedly exposed to poly(I:C), control mice showed a significant decrease in neutrophilic inflammation and bronchial hyperresponsiveness, while asthmatic mice experienced worsening of these outcomes.
Conclusions: This observational study report an asthmatic mouse model that can undergo exacerbation after repeated exposure to poly(I:C). Our findings on pulmonary adaptation in control mice may also pave the way for further research into the mechanism of adaptation that may be impaired in asthma and raise the question of whether asthma exacerbation may be a loss of adaptation.
期刊介绍:
Respiratory Research publishes high-quality clinical and basic research, review and commentary articles on all aspects of respiratory medicine and related diseases.
As the leading fully open access journal in the field, Respiratory Research provides an essential resource for pulmonologists, allergists, immunologists and other physicians, researchers, healthcare workers and medical students with worldwide dissemination of articles resulting in high visibility and generating international discussion.
Topics of specific interest include asthma, chronic obstructive pulmonary disease, cystic fibrosis, genetics, infectious diseases, interstitial lung diseases, lung development, lung tumors, occupational and environmental factors, pulmonary circulation, pulmonary pharmacology and therapeutics, respiratory immunology, respiratory physiology, and sleep-related respiratory problems.