Suhair S Al-Nimry, Ahlam Z Alkilani, Nareman A Alda'ajeh
{"title":"使用微针阵列贴片透皮给药利扎曲普坦:制备、表征和体内外研究","authors":"Suhair S Al-Nimry, Ahlam Z Alkilani, Nareman A Alda'ajeh","doi":"10.1080/10837450.2024.2393218","DOIUrl":null,"url":null,"abstract":"<p><p>Given the extensive first pass metabolism of rizatriptan in oral administration and its delayed absorption during a migraine attack as a result of gastric stasis, focus has been on transdermal delivery. The main purpose of this study is to prepare and assess transdermal formulation of rizatriptan, loaded on hydrogel microneedles delivery system, to avoid first pass metabolism and also improve its percutaneous permeation rate. Rizatriptan hydrogel microneedles were prepared using micromolding method and evaluated in terms of mechanical strength, encapsulation efficiency, permeation and in-vivo skin absorption. Different formulations of rizatriptan microneedles (F1-F5) were successfully prepared using different concentrations of carboxymethyl cellulose and gelatin type A. Rizatriptan hydrogel microneedles demonstrated favorable mechanical properties, including withstanding insertion forces, thereby enhancing its skin insertion ability. In permeation study, the percent cumulative drug released after 24 h ranged between 93.1-100% which means that microneedles were able to deliver the drug effectively. For in-vivo study, F3 formulation was selected due to its superior characteristics over other formulations as it exhibited the highest swelling capacity, and demonstrated favorable mechanical properties. Furthermore, F3 showcased the most controlled drug release over a 24-hour period. Relative bioavailability of F3 microneedles was 179.59% compared to oral administration based on the AUC<sub>0-24</sub>. The observed AUC<sub>0-24</sub> in F3 microneedles was statistically significant and 1.80 times greater than that in oral administration. The higher rizatriptan level in the microneedle demonstrated adequate drug permeability through the rat skin, suggesting the potential of microneedles for enhanced therapeutic effectiveness.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"776-789"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transdermal drug delivery of rizatriptan using microneedles array patch: preparation, characterization and ex-vivo/in-vivo study.\",\"authors\":\"Suhair S Al-Nimry, Ahlam Z Alkilani, Nareman A Alda'ajeh\",\"doi\":\"10.1080/10837450.2024.2393218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Given the extensive first pass metabolism of rizatriptan in oral administration and its delayed absorption during a migraine attack as a result of gastric stasis, focus has been on transdermal delivery. The main purpose of this study is to prepare and assess transdermal formulation of rizatriptan, loaded on hydrogel microneedles delivery system, to avoid first pass metabolism and also improve its percutaneous permeation rate. Rizatriptan hydrogel microneedles were prepared using micromolding method and evaluated in terms of mechanical strength, encapsulation efficiency, permeation and in-vivo skin absorption. Different formulations of rizatriptan microneedles (F1-F5) were successfully prepared using different concentrations of carboxymethyl cellulose and gelatin type A. Rizatriptan hydrogel microneedles demonstrated favorable mechanical properties, including withstanding insertion forces, thereby enhancing its skin insertion ability. In permeation study, the percent cumulative drug released after 24 h ranged between 93.1-100% which means that microneedles were able to deliver the drug effectively. For in-vivo study, F3 formulation was selected due to its superior characteristics over other formulations as it exhibited the highest swelling capacity, and demonstrated favorable mechanical properties. Furthermore, F3 showcased the most controlled drug release over a 24-hour period. Relative bioavailability of F3 microneedles was 179.59% compared to oral administration based on the AUC<sub>0-24</sub>. The observed AUC<sub>0-24</sub> in F3 microneedles was statistically significant and 1.80 times greater than that in oral administration. The higher rizatriptan level in the microneedle demonstrated adequate drug permeability through the rat skin, suggesting the potential of microneedles for enhanced therapeutic effectiveness.</p>\",\"PeriodicalId\":20004,\"journal\":{\"name\":\"Pharmaceutical Development and Technology\",\"volume\":\" \",\"pages\":\"776-789\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Development and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10837450.2024.2393218\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2024.2393218","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Transdermal drug delivery of rizatriptan using microneedles array patch: preparation, characterization and ex-vivo/in-vivo study.
Given the extensive first pass metabolism of rizatriptan in oral administration and its delayed absorption during a migraine attack as a result of gastric stasis, focus has been on transdermal delivery. The main purpose of this study is to prepare and assess transdermal formulation of rizatriptan, loaded on hydrogel microneedles delivery system, to avoid first pass metabolism and also improve its percutaneous permeation rate. Rizatriptan hydrogel microneedles were prepared using micromolding method and evaluated in terms of mechanical strength, encapsulation efficiency, permeation and in-vivo skin absorption. Different formulations of rizatriptan microneedles (F1-F5) were successfully prepared using different concentrations of carboxymethyl cellulose and gelatin type A. Rizatriptan hydrogel microneedles demonstrated favorable mechanical properties, including withstanding insertion forces, thereby enhancing its skin insertion ability. In permeation study, the percent cumulative drug released after 24 h ranged between 93.1-100% which means that microneedles were able to deliver the drug effectively. For in-vivo study, F3 formulation was selected due to its superior characteristics over other formulations as it exhibited the highest swelling capacity, and demonstrated favorable mechanical properties. Furthermore, F3 showcased the most controlled drug release over a 24-hour period. Relative bioavailability of F3 microneedles was 179.59% compared to oral administration based on the AUC0-24. The observed AUC0-24 in F3 microneedles was statistically significant and 1.80 times greater than that in oral administration. The higher rizatriptan level in the microneedle demonstrated adequate drug permeability through the rat skin, suggesting the potential of microneedles for enhanced therapeutic effectiveness.
期刊介绍:
Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology.
Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as:
-Preformulation and pharmaceutical formulation studies
-Pharmaceutical materials selection and characterization
-Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation
-QbD in the form a risk assessment and DoE driven approaches
-Design of dosage forms and drug delivery systems
-Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies
-Drug delivery systems research and quality improvement
-Pharmaceutical regulatory affairs
This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.