局部真菌感染治疗的革命性变革:将含渗透增强剂的囊泡作为氟康唑给药系统进行评估。体外和体内皮肤测试。

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Fatma A Sarhan, Mahmoud E Soliman, Manal Yassin Hamza, Riham I El-Gogary
{"title":"局部真菌感染治疗的革命性变革:将含渗透增强剂的囊泡作为氟康唑给药系统进行评估。体外和体内皮肤测试。","authors":"Fatma A Sarhan, Mahmoud E Soliman, Manal Yassin Hamza, Riham I El-Gogary","doi":"10.1080/10837450.2024.2394573","DOIUrl":null,"url":null,"abstract":"<p><p>Fungal infections pose a significant challenge in numerous developing nations and worldwide, necessitating urgent solutions. Oral administration of antifungal medications often leads to severe adverse reactions. Hence, employing topical delivery systems is preferred to ensure efficient dermal delivery of antifungal agents while minimizing side effects. Furthermore, the incorporation of penetration enhancers into nanocarriers loaded with antifungal agents has demonstrated enhanced efficacy in combating mycotic infections. Consequently, ultra-deformable penetration enhancer-containing vesicles (PEVs) were developed to explore this promising approach. In this study, Labrasol<sup>®</sup> and Transcutol<sup>®</sup> were used as penetration enhancers in formulating ultra-deformable PEVs containing the antifungal agent Fluconazole (FCZ). The PEVs underwent comprehensive characterization, including measurements of particle size (PS), charge, and entrapment efficiency (EE%). The results revealed that the size of tested PEVs ranged from 100 to 762 nm. All particles exhibited a negative charge, with a minimum zeta potential (ZP) of -38.26 mV, and an intermediate entrapment efficiency (EE%) that reached approximately 40%w/w. <i>Ex-vivo</i> studies demonstrated the ability of PEVs to deliver FCZ to the dermis while minimizing transdermal delivery. The selected formula was tested <i>in-vivo</i> using <i>candidiasis</i>-induced rat model and showed a superiority in its antifungal effect against <i>Candida Albicans</i> compared to the drug control. Stability studies were executed for the selected formula, and revealed good stability shown by the insignificant change in the PS, ZP& EE% over a six-month period.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"814-823"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing treatment for topical fungal infections: evaluating penetration-enhancer-containing vesicles as a fluconazole delivery system: <i>Ex-vivo</i> and <i>in-vivo</i> dermal testing.\",\"authors\":\"Fatma A Sarhan, Mahmoud E Soliman, Manal Yassin Hamza, Riham I El-Gogary\",\"doi\":\"10.1080/10837450.2024.2394573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fungal infections pose a significant challenge in numerous developing nations and worldwide, necessitating urgent solutions. Oral administration of antifungal medications often leads to severe adverse reactions. Hence, employing topical delivery systems is preferred to ensure efficient dermal delivery of antifungal agents while minimizing side effects. Furthermore, the incorporation of penetration enhancers into nanocarriers loaded with antifungal agents has demonstrated enhanced efficacy in combating mycotic infections. Consequently, ultra-deformable penetration enhancer-containing vesicles (PEVs) were developed to explore this promising approach. In this study, Labrasol<sup>®</sup> and Transcutol<sup>®</sup> were used as penetration enhancers in formulating ultra-deformable PEVs containing the antifungal agent Fluconazole (FCZ). The PEVs underwent comprehensive characterization, including measurements of particle size (PS), charge, and entrapment efficiency (EE%). The results revealed that the size of tested PEVs ranged from 100 to 762 nm. All particles exhibited a negative charge, with a minimum zeta potential (ZP) of -38.26 mV, and an intermediate entrapment efficiency (EE%) that reached approximately 40%w/w. <i>Ex-vivo</i> studies demonstrated the ability of PEVs to deliver FCZ to the dermis while minimizing transdermal delivery. The selected formula was tested <i>in-vivo</i> using <i>candidiasis</i>-induced rat model and showed a superiority in its antifungal effect against <i>Candida Albicans</i> compared to the drug control. Stability studies were executed for the selected formula, and revealed good stability shown by the insignificant change in the PS, ZP& EE% over a six-month period.</p>\",\"PeriodicalId\":20004,\"journal\":{\"name\":\"Pharmaceutical Development and Technology\",\"volume\":\" \",\"pages\":\"814-823\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Development and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10837450.2024.2394573\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2024.2394573","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

真菌感染在许多发展中国家和全球范围内都构成了重大挑战,亟待解决。口服抗真菌药物往往会导致严重的不良反应。因此,人们倾向于采用局部给药系统,以确保抗真菌剂的高效皮肤给药,同时最大限度地减少副作用。此外,在纳米载体中加入抗真菌剂的渗透促进剂已证明可提高抗真菌感染的疗效。因此,我们开发了含有渗透增强剂的超变形囊泡 (PEV),以探索这一前景广阔的方法。在这项研究中,Labrasol® 和 Transcutol® 被用作渗透增强剂,用于配制含有抗真菌剂氟康唑(FCZ)的超强可变形囊泡。对 PEV 进行了全面的表征,包括粒度(PS)、电荷和夹带效率(EE%)的测量。结果显示,测试的 PEV 粒径在 100 纳米到 762 纳米之间。所有颗粒都带负电荷,最小 zeta 电位(ZP)为 -38.26 mV,中间夹带效率(EE%)约为 40%w/w。体内外研究表明,PEVs 能够将 FCZ 输送到真皮层,同时最大限度地减少透皮输送。利用念珠菌病诱导的大鼠模型对所选配方进行了体内测试,结果表明与药物对照组相比,该配方对白色念珠菌的抗真菌效果更佳。对所选配方进行了稳定性研究,结果表明,在 6 个月的时间里,PS、ZP 和 EE% 的变化不大,这表明配方具有良好的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revolutionizing treatment for topical fungal infections: evaluating penetration-enhancer-containing vesicles as a fluconazole delivery system: Ex-vivo and in-vivo dermal testing.

Fungal infections pose a significant challenge in numerous developing nations and worldwide, necessitating urgent solutions. Oral administration of antifungal medications often leads to severe adverse reactions. Hence, employing topical delivery systems is preferred to ensure efficient dermal delivery of antifungal agents while minimizing side effects. Furthermore, the incorporation of penetration enhancers into nanocarriers loaded with antifungal agents has demonstrated enhanced efficacy in combating mycotic infections. Consequently, ultra-deformable penetration enhancer-containing vesicles (PEVs) were developed to explore this promising approach. In this study, Labrasol® and Transcutol® were used as penetration enhancers in formulating ultra-deformable PEVs containing the antifungal agent Fluconazole (FCZ). The PEVs underwent comprehensive characterization, including measurements of particle size (PS), charge, and entrapment efficiency (EE%). The results revealed that the size of tested PEVs ranged from 100 to 762 nm. All particles exhibited a negative charge, with a minimum zeta potential (ZP) of -38.26 mV, and an intermediate entrapment efficiency (EE%) that reached approximately 40%w/w. Ex-vivo studies demonstrated the ability of PEVs to deliver FCZ to the dermis while minimizing transdermal delivery. The selected formula was tested in-vivo using candidiasis-induced rat model and showed a superiority in its antifungal effect against Candida Albicans compared to the drug control. Stability studies were executed for the selected formula, and revealed good stability shown by the insignificant change in the PS, ZP& EE% over a six-month period.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
2.90%
发文量
82
审稿时长
1 months
期刊介绍: Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology. Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as: -Preformulation and pharmaceutical formulation studies -Pharmaceutical materials selection and characterization -Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation -QbD in the form a risk assessment and DoE driven approaches -Design of dosage forms and drug delivery systems -Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies -Drug delivery systems research and quality improvement -Pharmaceutical regulatory affairs This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信