Erin C. S. Lee, Rebekah L. Lawrence, Michael J. Rainbow
{"title":"人类肩胛骨形状的性别二形性和异形性。","authors":"Erin C. S. Lee, Rebekah L. Lawrence, Michael J. Rainbow","doi":"10.1111/joa.14124","DOIUrl":null,"url":null,"abstract":"<p>Scapula shape is highly variable across humans and appears to be sexually dimorphic—differing significantly between biological males and females. However, previous investigations of sexual dimorphism in scapula shape have not considered the effects of allometry (the relationship between size and shape). Disentangling allometry from sexual dimorphism is necessary because apparent sex-based differences in shape could be due to inherent differences in body size. This study aimed to investigate sexual dimorphism in scapula shape and examine the role of allometry in sex-based variation. We used three-dimensional geometric morphometrics with Procrustes ANOVA to quantify scapula shape variation associated with sex and size in 125 scapulae. Scapula shape significantly differed between males and females, and males tended to have larger scapulae than females for the same body height. We found that males and females exhibited distinct allometric relationships, and sexually dimorphic shape changes did not align with male- or female-specific allometry. A secondary test revealed that sexual dimorphism in scapula shape persisted between males and females of similar body heights. Overall, our findings indicate that there are sex-based differences in scapula shape that cannot be attributed to size-shape relationships. Our results shed light on the potential role of sexual selection in human shoulder evolution, present new hypotheses for biomechanical differences in shoulder function between sexes, and identify relevant traits for improving sex classification accuracy in forensic analyses.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":"245 5","pages":"674-685"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/joa.14124","citationCount":"0","resultStr":"{\"title\":\"Sexual dimorphism and allometry in human scapula shape\",\"authors\":\"Erin C. S. Lee, Rebekah L. Lawrence, Michael J. Rainbow\",\"doi\":\"10.1111/joa.14124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Scapula shape is highly variable across humans and appears to be sexually dimorphic—differing significantly between biological males and females. However, previous investigations of sexual dimorphism in scapula shape have not considered the effects of allometry (the relationship between size and shape). Disentangling allometry from sexual dimorphism is necessary because apparent sex-based differences in shape could be due to inherent differences in body size. This study aimed to investigate sexual dimorphism in scapula shape and examine the role of allometry in sex-based variation. We used three-dimensional geometric morphometrics with Procrustes ANOVA to quantify scapula shape variation associated with sex and size in 125 scapulae. Scapula shape significantly differed between males and females, and males tended to have larger scapulae than females for the same body height. We found that males and females exhibited distinct allometric relationships, and sexually dimorphic shape changes did not align with male- or female-specific allometry. A secondary test revealed that sexual dimorphism in scapula shape persisted between males and females of similar body heights. Overall, our findings indicate that there are sex-based differences in scapula shape that cannot be attributed to size-shape relationships. Our results shed light on the potential role of sexual selection in human shoulder evolution, present new hypotheses for biomechanical differences in shoulder function between sexes, and identify relevant traits for improving sex classification accuracy in forensic analyses.</p>\",\"PeriodicalId\":14971,\"journal\":{\"name\":\"Journal of Anatomy\",\"volume\":\"245 5\",\"pages\":\"674-685\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/joa.14124\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Anatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/joa.14124\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/joa.14124","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Sexual dimorphism and allometry in human scapula shape
Scapula shape is highly variable across humans and appears to be sexually dimorphic—differing significantly between biological males and females. However, previous investigations of sexual dimorphism in scapula shape have not considered the effects of allometry (the relationship between size and shape). Disentangling allometry from sexual dimorphism is necessary because apparent sex-based differences in shape could be due to inherent differences in body size. This study aimed to investigate sexual dimorphism in scapula shape and examine the role of allometry in sex-based variation. We used three-dimensional geometric morphometrics with Procrustes ANOVA to quantify scapula shape variation associated with sex and size in 125 scapulae. Scapula shape significantly differed between males and females, and males tended to have larger scapulae than females for the same body height. We found that males and females exhibited distinct allometric relationships, and sexually dimorphic shape changes did not align with male- or female-specific allometry. A secondary test revealed that sexual dimorphism in scapula shape persisted between males and females of similar body heights. Overall, our findings indicate that there are sex-based differences in scapula shape that cannot be attributed to size-shape relationships. Our results shed light on the potential role of sexual selection in human shoulder evolution, present new hypotheses for biomechanical differences in shoulder function between sexes, and identify relevant traits for improving sex classification accuracy in forensic analyses.
期刊介绍:
Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system.
Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract.
We particularly welcome submissions in the following areas:
Cell biology and tissue architecture
Comparative functional morphology
Developmental biology
Evolutionary developmental biology
Evolutionary morphology
Functional human anatomy
Integrative vertebrate paleontology
Methodological innovations in anatomical research
Musculoskeletal system
Neuroanatomy and neurodegeneration
Significant advances in anatomical education.