{"title":"螺旋体衍生物 Tuftsin-phopshorylcholine,用于治疗自身免疫。","authors":"Miri Blank , Yehuda Shoenfeld","doi":"10.1016/j.autrev.2024.103601","DOIUrl":null,"url":null,"abstract":"<div><div>Autoimmune diseases (AIDs) affect 5 to 10% of the population. There are more than ∼100 different autoimmune diseases. The AIDs are one of the top 10 causes of death in women under 65; 2nd highest cause of chronic illness; top cause of morbidity in women in the US. The NIH estimates annual direct healthcare costs for autoimmune diseases about $100 billion, in comparison, with cancers investment of $57 billion, heart and stroke cost of $200 billion.</div><div>The current treatments for autoimmune diseases encompasses: steroids, chemotherapy, immunosuppressants, biological drugs, disease specific drugs (like acethylcholine-estherase for myasthenia gravis). The treatments for autooimmune diseases supress the patient immune network, which leads the patients to be more susceptible to infections. Hence, there is a need to develop immunomodulatory small molecules with minimal side effects to treat autoimmune diseases.</div><div>The helminths developed secreting compounds which modulate the human defense pathways in order to develop tolerance and survive in the host environment.</div><div>We have imitated the immunomodulatory activity of the helminth by using a derivative of the helminth secretory molecule.</div><div>A bi-functional small molecule –tuftsin (T)-phosphorylcholine (PC), coined as TPC, was constructed. This chimeric molecule showed its immunomodulatory activity in 4 murine models of autoimmune diseases, attenuating the clinical score and the inflammatory response by immunomodutating the host immune system. <em>Ex-vivo</em> in human peripheral blood mononuclear cells (PBMCs) and biopsies originated from arteries of patients with giant cell arteritis. This paper decipher the mode of action of TPC immunomodulatory activity. Our data propose the potential for this small molecule to be a novel therapy for patients with autoimmune diseases.</div></div>","PeriodicalId":8664,"journal":{"name":"Autoimmunity reviews","volume":null,"pages":null},"PeriodicalIF":9.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Helminth derivative tuftsin-phopshorylcholine to treat autoimmunity\",\"authors\":\"Miri Blank , Yehuda Shoenfeld\",\"doi\":\"10.1016/j.autrev.2024.103601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Autoimmune diseases (AIDs) affect 5 to 10% of the population. There are more than ∼100 different autoimmune diseases. The AIDs are one of the top 10 causes of death in women under 65; 2nd highest cause of chronic illness; top cause of morbidity in women in the US. The NIH estimates annual direct healthcare costs for autoimmune diseases about $100 billion, in comparison, with cancers investment of $57 billion, heart and stroke cost of $200 billion.</div><div>The current treatments for autoimmune diseases encompasses: steroids, chemotherapy, immunosuppressants, biological drugs, disease specific drugs (like acethylcholine-estherase for myasthenia gravis). The treatments for autooimmune diseases supress the patient immune network, which leads the patients to be more susceptible to infections. Hence, there is a need to develop immunomodulatory small molecules with minimal side effects to treat autoimmune diseases.</div><div>The helminths developed secreting compounds which modulate the human defense pathways in order to develop tolerance and survive in the host environment.</div><div>We have imitated the immunomodulatory activity of the helminth by using a derivative of the helminth secretory molecule.</div><div>A bi-functional small molecule –tuftsin (T)-phosphorylcholine (PC), coined as TPC, was constructed. This chimeric molecule showed its immunomodulatory activity in 4 murine models of autoimmune diseases, attenuating the clinical score and the inflammatory response by immunomodutating the host immune system. <em>Ex-vivo</em> in human peripheral blood mononuclear cells (PBMCs) and biopsies originated from arteries of patients with giant cell arteritis. This paper decipher the mode of action of TPC immunomodulatory activity. Our data propose the potential for this small molecule to be a novel therapy for patients with autoimmune diseases.</div></div>\",\"PeriodicalId\":8664,\"journal\":{\"name\":\"Autoimmunity reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autoimmunity reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568997224000922\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autoimmunity reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568997224000922","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Helminth derivative tuftsin-phopshorylcholine to treat autoimmunity
Autoimmune diseases (AIDs) affect 5 to 10% of the population. There are more than ∼100 different autoimmune diseases. The AIDs are one of the top 10 causes of death in women under 65; 2nd highest cause of chronic illness; top cause of morbidity in women in the US. The NIH estimates annual direct healthcare costs for autoimmune diseases about $100 billion, in comparison, with cancers investment of $57 billion, heart and stroke cost of $200 billion.
The current treatments for autoimmune diseases encompasses: steroids, chemotherapy, immunosuppressants, biological drugs, disease specific drugs (like acethylcholine-estherase for myasthenia gravis). The treatments for autooimmune diseases supress the patient immune network, which leads the patients to be more susceptible to infections. Hence, there is a need to develop immunomodulatory small molecules with minimal side effects to treat autoimmune diseases.
The helminths developed secreting compounds which modulate the human defense pathways in order to develop tolerance and survive in the host environment.
We have imitated the immunomodulatory activity of the helminth by using a derivative of the helminth secretory molecule.
A bi-functional small molecule –tuftsin (T)-phosphorylcholine (PC), coined as TPC, was constructed. This chimeric molecule showed its immunomodulatory activity in 4 murine models of autoimmune diseases, attenuating the clinical score and the inflammatory response by immunomodutating the host immune system. Ex-vivo in human peripheral blood mononuclear cells (PBMCs) and biopsies originated from arteries of patients with giant cell arteritis. This paper decipher the mode of action of TPC immunomodulatory activity. Our data propose the potential for this small molecule to be a novel therapy for patients with autoimmune diseases.
期刊介绍:
Autoimmunity Reviews is a publication that features up-to-date, structured reviews on various topics in the field of autoimmunity. These reviews are written by renowned experts and include demonstrative illustrations and tables. Each article will have a clear "take-home" message for readers.
The selection of articles is primarily done by the Editors-in-Chief, based on recommendations from the international Editorial Board. The topics covered in the articles span all areas of autoimmunology, aiming to bridge the gap between basic and clinical sciences.
In terms of content, the contributions in basic sciences delve into the pathophysiology and mechanisms of autoimmune disorders, as well as genomics and proteomics. On the other hand, clinical contributions focus on diseases related to autoimmunity, novel therapies, and clinical associations.
Autoimmunity Reviews is internationally recognized, and its articles are indexed and abstracted in prestigious databases such as PubMed/Medline, Science Citation Index Expanded, Biosciences Information Services, and Chemical Abstracts.