生物特征分子在蒸发盐水中累积并持久存在:对行星探索的影响

IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Astrobiology Pub Date : 2024-08-01 DOI:10.1089/ast.2023.0122
Chad Pozarycki, Kenneth M Seaton, Emily C Vincent, Carlie Novak Sanders, Nickie Nuñez, Mariah Castillo, Ellery Ingall, Benjamin Klempay, Alexandra Pontefract, Luke A Fisher, Emily R Paris, Steffen Buessecker, Nikolas B Alansson, Christopher E Carr, Peter T Doran, Jeff S Bowman, Britney E Schmidt, Amanda M Stockton
{"title":"生物特征分子在蒸发盐水中累积并持久存在:对行星探索的影响","authors":"Chad Pozarycki, Kenneth M Seaton, Emily C Vincent, Carlie Novak Sanders, Nickie Nuñez, Mariah Castillo, Ellery Ingall, Benjamin Klempay, Alexandra Pontefract, Luke A Fisher, Emily R Paris, Steffen Buessecker, Nikolas B Alansson, Christopher E Carr, Peter T Doran, Jeff S Bowman, Britney E Schmidt, Amanda M Stockton","doi":"10.1089/ast.2023.0122","DOIUrl":null,"url":null,"abstract":"<p><p>The abundance of potentially habitable hypersaline environments in our solar system compels us to understand the impacts of high-salt matrices and brine dynamics on biosignature detection efforts. We identified and quantified organic compounds in brines from South Bay Salt Works (SBSW), where evapoconcentration of ocean water enables exploration of the impact of NaCl- and MgCl<sub>2</sub>-dominated brines on the detection of potential biosignature molecules. In SBSW, organic biosignature abundance and distribution are likely influenced by evapoconcentration, osmolyte accumulation, and preservation effects. Bioluminescence assays show that adenosine triphosphate (ATP) concentrations are higher in NaCl-rich, low water activity (<i>a</i><sub>w</sub>) samples (<0.85) from SBSW. This is consistent with the accumulation and preservation of ATP at low <i>a</i><sub>w</sub> as described in past laboratory studies. The water-soluble small organic molecule inventory was determined by using microchip capillary electrophoresis paired with high-resolution mass spectrometry (µCE-HRMS). We analyzed the relative distribution of proteinogenic amino acids with a recently developed quantitative method using CE-separation and laser-induced fluorescence (LIF) detection of amino acids in hypersaline brines. Salinity trends for dissolved free amino acids were consistent with amino acid residue abundance determined from the proteome of the microbial community predicted from metagenomic data. This highlights a tangible connection up and down the \"-omics\" ladder across changing geochemical conditions. The detection of water-soluble organic compounds, specifically proteinogenic amino acids at high abundance (>7 mM) in concentrated brines, demonstrates that potential organic biomarkers accumulate at hypersaline sites and suggests the possibility of long-term preservation. The detection of such molecules in high abundance when using diverse analytical tools appropriate for spacecraft suggests that life detection within hypersaline environments, such as evaporates on Mars and the surface or subsurface brines of ocean world Europa, is plausible and argues such environments should be a high priority for future exploration. Key Words: Salts-Analytical chemistry-Amino acids-Biosignatures-Capillary electrophoresis-Preservation. Astrobiology 24, 795-812.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 8","pages":"795-812"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biosignature Molecules Accumulate and Persist in Evaporitic Brines: Implications for Planetary Exploration.\",\"authors\":\"Chad Pozarycki, Kenneth M Seaton, Emily C Vincent, Carlie Novak Sanders, Nickie Nuñez, Mariah Castillo, Ellery Ingall, Benjamin Klempay, Alexandra Pontefract, Luke A Fisher, Emily R Paris, Steffen Buessecker, Nikolas B Alansson, Christopher E Carr, Peter T Doran, Jeff S Bowman, Britney E Schmidt, Amanda M Stockton\",\"doi\":\"10.1089/ast.2023.0122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The abundance of potentially habitable hypersaline environments in our solar system compels us to understand the impacts of high-salt matrices and brine dynamics on biosignature detection efforts. We identified and quantified organic compounds in brines from South Bay Salt Works (SBSW), where evapoconcentration of ocean water enables exploration of the impact of NaCl- and MgCl<sub>2</sub>-dominated brines on the detection of potential biosignature molecules. In SBSW, organic biosignature abundance and distribution are likely influenced by evapoconcentration, osmolyte accumulation, and preservation effects. Bioluminescence assays show that adenosine triphosphate (ATP) concentrations are higher in NaCl-rich, low water activity (<i>a</i><sub>w</sub>) samples (<0.85) from SBSW. This is consistent with the accumulation and preservation of ATP at low <i>a</i><sub>w</sub> as described in past laboratory studies. The water-soluble small organic molecule inventory was determined by using microchip capillary electrophoresis paired with high-resolution mass spectrometry (µCE-HRMS). We analyzed the relative distribution of proteinogenic amino acids with a recently developed quantitative method using CE-separation and laser-induced fluorescence (LIF) detection of amino acids in hypersaline brines. Salinity trends for dissolved free amino acids were consistent with amino acid residue abundance determined from the proteome of the microbial community predicted from metagenomic data. This highlights a tangible connection up and down the \\\"-omics\\\" ladder across changing geochemical conditions. The detection of water-soluble organic compounds, specifically proteinogenic amino acids at high abundance (>7 mM) in concentrated brines, demonstrates that potential organic biomarkers accumulate at hypersaline sites and suggests the possibility of long-term preservation. The detection of such molecules in high abundance when using diverse analytical tools appropriate for spacecraft suggests that life detection within hypersaline environments, such as evaporates on Mars and the surface or subsurface brines of ocean world Europa, is plausible and argues such environments should be a high priority for future exploration. Key Words: Salts-Analytical chemistry-Amino acids-Biosignatures-Capillary electrophoresis-Preservation. Astrobiology 24, 795-812.</p>\",\"PeriodicalId\":8645,\"journal\":{\"name\":\"Astrobiology\",\"volume\":\"24 8\",\"pages\":\"795-812\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrobiology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1089/ast.2023.0122\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2023.0122","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

太阳系中存在大量潜在宜居的超盐环境,这迫使我们了解高盐基质和盐水动力学对生物特征探测工作的影响。我们对南湾盐厂(SBSW)盐水中的有机化合物进行了鉴定和定量,海水的蒸发浓缩使我们能够探索以氯化钠和氯化镁为主的盐水对潜在生物特征分子检测的影响。在 SBSW 中,有机生物特征的丰度和分布可能受到蒸发富集、渗透溶质积累和保存效应的影响。生物发光测定显示,富含 NaCl、水活度(aw)低的样本(如过去实验室研究中所述的 aw)中三磷酸腺苷(ATP)浓度较高。我们使用微芯片毛细管电泳法和高分辨率质谱法(µCE-HRMS)测定了水溶性小有机分子的存量。我们采用最新开发的定量方法,利用 CE 分离和激光诱导荧光(LIF)检测超盐度盐水中的氨基酸,分析了蛋白质氨基酸的相对分布。溶解游离氨基酸的盐度变化趋势与根据元基因组数据预测的微生物群落蛋白质组确定的氨基酸残留丰度一致。这凸显了在不断变化的地球化学条件下,"组学 "阶梯上下的实际联系。在浓盐水中检测到水溶性有机化合物,特别是高丰度(>7 mM)的蛋白质氨基酸,表明潜在的有机生物标志物在高盐度地点积聚,并提示了长期保存的可能性。利用适合航天器的多种分析工具检测到高丰度的此类分子表明,在超盐水环境(如火星蒸发物和海洋世界木卫二的表面或地下盐水)中检测到生命是可信的,并认为此类环境应成为未来探索的重点。关键字盐类-分析化学-氨基酸-生物特征-毛细管电泳-保存。天体生物学 24,795-812。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biosignature Molecules Accumulate and Persist in Evaporitic Brines: Implications for Planetary Exploration.

The abundance of potentially habitable hypersaline environments in our solar system compels us to understand the impacts of high-salt matrices and brine dynamics on biosignature detection efforts. We identified and quantified organic compounds in brines from South Bay Salt Works (SBSW), where evapoconcentration of ocean water enables exploration of the impact of NaCl- and MgCl2-dominated brines on the detection of potential biosignature molecules. In SBSW, organic biosignature abundance and distribution are likely influenced by evapoconcentration, osmolyte accumulation, and preservation effects. Bioluminescence assays show that adenosine triphosphate (ATP) concentrations are higher in NaCl-rich, low water activity (aw) samples (<0.85) from SBSW. This is consistent with the accumulation and preservation of ATP at low aw as described in past laboratory studies. The water-soluble small organic molecule inventory was determined by using microchip capillary electrophoresis paired with high-resolution mass spectrometry (µCE-HRMS). We analyzed the relative distribution of proteinogenic amino acids with a recently developed quantitative method using CE-separation and laser-induced fluorescence (LIF) detection of amino acids in hypersaline brines. Salinity trends for dissolved free amino acids were consistent with amino acid residue abundance determined from the proteome of the microbial community predicted from metagenomic data. This highlights a tangible connection up and down the "-omics" ladder across changing geochemical conditions. The detection of water-soluble organic compounds, specifically proteinogenic amino acids at high abundance (>7 mM) in concentrated brines, demonstrates that potential organic biomarkers accumulate at hypersaline sites and suggests the possibility of long-term preservation. The detection of such molecules in high abundance when using diverse analytical tools appropriate for spacecraft suggests that life detection within hypersaline environments, such as evaporates on Mars and the surface or subsurface brines of ocean world Europa, is plausible and argues such environments should be a high priority for future exploration. Key Words: Salts-Analytical chemistry-Amino acids-Biosignatures-Capillary electrophoresis-Preservation. Astrobiology 24, 795-812.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrobiology
Astrobiology 生物-地球科学综合
CiteScore
7.70
自引率
11.90%
发文量
100
审稿时长
3 months
期刊介绍: Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research. Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信