Jun Xu, Shuangwei Liu, Yueming Ren, Yang You, Zhifang Wang, Yongqiang Zhang, Xinjie Zhu, Ping Hu
{"title":"蔷薇属植物 HSP90 基因家族的全基因组鉴定及其对盐和干旱胁迫的响应","authors":"Jun Xu, Shuangwei Liu, Yueming Ren, Yang You, Zhifang Wang, Yongqiang Zhang, Xinjie Zhu, Ping Hu","doi":"10.1007/s13205-024-04052-0","DOIUrl":null,"url":null,"abstract":"<p><p>Heat shock protein 90 (HSP90) is important for many organisms, including plants. Based on the whole genome information, the gene number, gene structure, evolutionary relationship, protein structure, and active site of the HSP90 gene family in <i>Rosa chinensis</i> and <i>Rubus idaeus</i> were determined, and the expression of the <i>HSP90</i> gene under salt, and drought stresses in two rose varieties Wangxifeng and Sweet Avalanche were analyzed. Six and eight <i>HSP90</i> genes were identified from <i>R. chinensis</i> and <i>Ru. idaeus</i>, respectively. Phylogenetic analysis revealed that the analyzed genes were divided into two Groups and four subgroups (Classes 1a, 1b, 2a, and 2b). Although members within the same classes displayed highly similar gene structures, while the gene structures and conserved domains of Group 1 (Class 1a and 1b) and the Group 2 (Class 2a and 2b) are different. Tandem and segmental duplication genes were found in <i>Ru. idaeus</i>, but not in <i>R. chinensis</i>, perhaps explaining the difference in <i>HSP90</i> gene quantity in the two analyzed species. Analysis of cis-acting elements revealed abundant abiotic stress, photolight-response, and hormone-response elements in <i>R. chinensis</i> HSP90s. qRT-PCR analysis suggested that <i>RcHSP90-1-1</i>, <i>RcHSP90-5-1</i> and <i>RcHSP90-6-1</i> in Sweet Avalanche and Wangxifeng varieties played important regulatory roles under salt and drought stress. The analysis of protein structure and active sites indicate that the potential different roles of <i>RcHSP90-1-1</i>, <i>RcHSP90-5-1</i>, and <i>RcHSP90-6-1</i> in salt and drought stresses may come from the differences of corresponding protein structures and activation sites. These data will provide information for the breeding of rose varieties with high stress resistance.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04052-0.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11330952/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genome-wide identification of <i>HSP90</i> gene family in <i>Rosa chinensis</i> and its response to salt and drought stresses.\",\"authors\":\"Jun Xu, Shuangwei Liu, Yueming Ren, Yang You, Zhifang Wang, Yongqiang Zhang, Xinjie Zhu, Ping Hu\",\"doi\":\"10.1007/s13205-024-04052-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heat shock protein 90 (HSP90) is important for many organisms, including plants. Based on the whole genome information, the gene number, gene structure, evolutionary relationship, protein structure, and active site of the HSP90 gene family in <i>Rosa chinensis</i> and <i>Rubus idaeus</i> were determined, and the expression of the <i>HSP90</i> gene under salt, and drought stresses in two rose varieties Wangxifeng and Sweet Avalanche were analyzed. Six and eight <i>HSP90</i> genes were identified from <i>R. chinensis</i> and <i>Ru. idaeus</i>, respectively. Phylogenetic analysis revealed that the analyzed genes were divided into two Groups and four subgroups (Classes 1a, 1b, 2a, and 2b). Although members within the same classes displayed highly similar gene structures, while the gene structures and conserved domains of Group 1 (Class 1a and 1b) and the Group 2 (Class 2a and 2b) are different. Tandem and segmental duplication genes were found in <i>Ru. idaeus</i>, but not in <i>R. chinensis</i>, perhaps explaining the difference in <i>HSP90</i> gene quantity in the two analyzed species. Analysis of cis-acting elements revealed abundant abiotic stress, photolight-response, and hormone-response elements in <i>R. chinensis</i> HSP90s. qRT-PCR analysis suggested that <i>RcHSP90-1-1</i>, <i>RcHSP90-5-1</i> and <i>RcHSP90-6-1</i> in Sweet Avalanche and Wangxifeng varieties played important regulatory roles under salt and drought stress. The analysis of protein structure and active sites indicate that the potential different roles of <i>RcHSP90-1-1</i>, <i>RcHSP90-5-1</i>, and <i>RcHSP90-6-1</i> in salt and drought stresses may come from the differences of corresponding protein structures and activation sites. These data will provide information for the breeding of rose varieties with high stress resistance.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04052-0.</p>\",\"PeriodicalId\":7067,\"journal\":{\"name\":\"3 Biotech\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11330952/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3 Biotech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13205-024-04052-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04052-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Genome-wide identification of HSP90 gene family in Rosa chinensis and its response to salt and drought stresses.
Heat shock protein 90 (HSP90) is important for many organisms, including plants. Based on the whole genome information, the gene number, gene structure, evolutionary relationship, protein structure, and active site of the HSP90 gene family in Rosa chinensis and Rubus idaeus were determined, and the expression of the HSP90 gene under salt, and drought stresses in two rose varieties Wangxifeng and Sweet Avalanche were analyzed. Six and eight HSP90 genes were identified from R. chinensis and Ru. idaeus, respectively. Phylogenetic analysis revealed that the analyzed genes were divided into two Groups and four subgroups (Classes 1a, 1b, 2a, and 2b). Although members within the same classes displayed highly similar gene structures, while the gene structures and conserved domains of Group 1 (Class 1a and 1b) and the Group 2 (Class 2a and 2b) are different. Tandem and segmental duplication genes were found in Ru. idaeus, but not in R. chinensis, perhaps explaining the difference in HSP90 gene quantity in the two analyzed species. Analysis of cis-acting elements revealed abundant abiotic stress, photolight-response, and hormone-response elements in R. chinensis HSP90s. qRT-PCR analysis suggested that RcHSP90-1-1, RcHSP90-5-1 and RcHSP90-6-1 in Sweet Avalanche and Wangxifeng varieties played important regulatory roles under salt and drought stress. The analysis of protein structure and active sites indicate that the potential different roles of RcHSP90-1-1, RcHSP90-5-1, and RcHSP90-6-1 in salt and drought stresses may come from the differences of corresponding protein structures and activation sites. These data will provide information for the breeding of rose varieties with high stress resistance.
Supplementary information: The online version contains supplementary material available at 10.1007/s13205-024-04052-0.
3 BiotechAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.