通过与稀有气体原子的高能量碰撞对钇的自旋轨道激发进行成像。

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Ang Xu, Yujie Ma, Dong Yan, Fangfang Li, Fei Song, Ti Zhou, Zihan Yuan, Xiyu Liu, Jiaxing Liu, Fengyan Wang
{"title":"通过与稀有气体原子的高能量碰撞对钇的自旋轨道激发进行成像。","authors":"Ang Xu, Yujie Ma, Dong Yan, Fangfang Li, Fei Song, Ti Zhou, Zihan Yuan, Xiyu Liu, Jiaxing Liu, Fengyan Wang","doi":"10.1021/acs.jpclett.4c01924","DOIUrl":null,"url":null,"abstract":"<p><p>The energy required for spin-orbit excitation plays a critical role in understanding translational-to-electronic energy conversion, particularly in chemical reactions involving changes in spin states. This is particularly important for transition metal atoms possessing <i>d</i>-orbitals, which result in multiple spin-orbit split energy levels at low energies. The accurate identification and characterization of spin-orbit transitions in such species require advanced experimental techniques and theoretical support. In this study, the spin-orbit excited collisions of Y(<sup>2</sup>D<sub>3/2</sub>) with rare gas atoms Ne, Ar, and Kr leading to Y(<sup>2</sup>D<sub>5/2</sub>) were observed using laser-ablated crossed-beam and time-sliced ion velocity mapping imaging techniques. Through a comparison of the forward angular distributions of Y(<sup>2</sup>D<sub>3/2</sub>) to the backward and sideway scattering distributions of Y(<sup>2</sup>D<sub>5/2</sub>) from elastic and inelastic collisions of Y(<sup>2</sup>D) with rare gas atoms, this study reveals that the spin-orbit electronic excitation occurs with high collision energy and low impact parameters from backward and sideway collisions. The effectiveness of the spin-orbit excitation process is strongly dependent on the collision energy or temperature, suggesting that energy requirements of the process have to be considered in chemical reactions involving changes in spin states.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":" ","pages":"8721-8727"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Imaging Spin-Orbit Excitation of Yttrium through High-Energy Collisions with Rare Gas Atoms.\",\"authors\":\"Ang Xu, Yujie Ma, Dong Yan, Fangfang Li, Fei Song, Ti Zhou, Zihan Yuan, Xiyu Liu, Jiaxing Liu, Fengyan Wang\",\"doi\":\"10.1021/acs.jpclett.4c01924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The energy required for spin-orbit excitation plays a critical role in understanding translational-to-electronic energy conversion, particularly in chemical reactions involving changes in spin states. This is particularly important for transition metal atoms possessing <i>d</i>-orbitals, which result in multiple spin-orbit split energy levels at low energies. The accurate identification and characterization of spin-orbit transitions in such species require advanced experimental techniques and theoretical support. In this study, the spin-orbit excited collisions of Y(<sup>2</sup>D<sub>3/2</sub>) with rare gas atoms Ne, Ar, and Kr leading to Y(<sup>2</sup>D<sub>5/2</sub>) were observed using laser-ablated crossed-beam and time-sliced ion velocity mapping imaging techniques. Through a comparison of the forward angular distributions of Y(<sup>2</sup>D<sub>3/2</sub>) to the backward and sideway scattering distributions of Y(<sup>2</sup>D<sub>5/2</sub>) from elastic and inelastic collisions of Y(<sup>2</sup>D) with rare gas atoms, this study reveals that the spin-orbit electronic excitation occurs with high collision energy and low impact parameters from backward and sideway collisions. The effectiveness of the spin-orbit excitation process is strongly dependent on the collision energy or temperature, suggesting that energy requirements of the process have to be considered in chemical reactions involving changes in spin states.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\" \",\"pages\":\"8721-8727\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpclett.4c01924\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c01924","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

自旋轨道激发所需的能量对于理解平移到电子的能量转换起着至关重要的作用,尤其是在涉及自旋状态变化的化学反应中。这对于拥有 d 轨道的过渡金属原子尤为重要,因为 d 轨道会在低能量时产生多个自旋轨道分裂能级。要准确识别和表征此类物质的自旋轨道跃迁,需要先进的实验技术和理论支持。在这项研究中,利用激光照射交叉光束和时间切片离子速度映射成像技术,观察了 Y(2D3/2)与稀有气体原子 Ne、Ar 和 Kr 的自旋轨道激发碰撞导致的 Y(2D5/2)。通过比较 Y(2D)与稀有气体原子的弹性和非弹性碰撞产生的 Y(2D3/2)前向角分布与 Y(2D5/2)后向和侧向散射分布,该研究揭示了后向和侧向碰撞产生的自旋轨道电子激发具有碰撞能量高、碰撞参数低的特点。自旋轨道激发过程的有效性与碰撞能量或温度密切相关,这表明在涉及自旋态变化的化学反应中必须考虑该过程的能量要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Imaging Spin-Orbit Excitation of Yttrium through High-Energy Collisions with Rare Gas Atoms.

Imaging Spin-Orbit Excitation of Yttrium through High-Energy Collisions with Rare Gas Atoms.

The energy required for spin-orbit excitation plays a critical role in understanding translational-to-electronic energy conversion, particularly in chemical reactions involving changes in spin states. This is particularly important for transition metal atoms possessing d-orbitals, which result in multiple spin-orbit split energy levels at low energies. The accurate identification and characterization of spin-orbit transitions in such species require advanced experimental techniques and theoretical support. In this study, the spin-orbit excited collisions of Y(2D3/2) with rare gas atoms Ne, Ar, and Kr leading to Y(2D5/2) were observed using laser-ablated crossed-beam and time-sliced ion velocity mapping imaging techniques. Through a comparison of the forward angular distributions of Y(2D3/2) to the backward and sideway scattering distributions of Y(2D5/2) from elastic and inelastic collisions of Y(2D) with rare gas atoms, this study reveals that the spin-orbit electronic excitation occurs with high collision energy and low impact parameters from backward and sideway collisions. The effectiveness of the spin-orbit excitation process is strongly dependent on the collision energy or temperature, suggesting that energy requirements of the process have to be considered in chemical reactions involving changes in spin states.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信