解密 Fe(II)/Peroxydisulfate 过程中 Fe(IV) 的形成:硫酸根的关键作用。

IF 11.3 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
环境科学与技术 Pub Date : 2024-09-03 Epub Date: 2024-08-20 DOI:10.1021/acs.est.4c06675
Guang Li, Yiqiao Zhang, Xue Zhang, Jian Zhang, Bo Sun
{"title":"解密 Fe(II)/Peroxydisulfate 过程中 Fe(IV) 的形成:硫酸根的关键作用。","authors":"Guang Li, Yiqiao Zhang, Xue Zhang, Jian Zhang, Bo Sun","doi":"10.1021/acs.est.4c06675","DOIUrl":null,"url":null,"abstract":"<p><p>This study delves into the formation of ferryl ions (Fe(IV)) within the Fe(II)/peroxydisulfate (PDS) process, a pivotal reaction in advanced oxidation processes (AOPs) aimed at organic pollutant removal. Our findings challenge the conventional view that Fe(IV) predominantly forms through oxygen transfer from PDS to Fe(II), revealing that sulfate radicals (SO<sub>4</sub><sup>•-</sup>) play a crucial role in Fe(IV) generation. By employing competitive kinetics, the second-order rate constant for Fe(III) oxidation by SO<sub>4</sub><sup>•-</sup> was quantified as 4.58 × 10<sup>8</sup> M<sup>-1</sup> s<sup>-1</sup>. Factors such as the probe compound concentration, chloride presence, and iron species influence Fe(IV) generation, all of which were systematically evaluated. Additionally, the study explores Fe(IV) formation in various Fe(II)-activated AOPs, demonstrating that precursors like peroxymonosulfate and H<sub>2</sub>O<sub>2</sub> can also directly oxidize Fe(II) to Fe(IV). Through experimental data, kinetic modeling, and oxygen-18 labeling experiments, this research offers a comprehensive understanding of the Fe(II)/PDS system, facilitating the optimization of AOPs for pollutant degradation. Finally, introducing HSO<sub>3</sub><sup>-</sup> was proposed to shift the Fe(II)/PDS process from Fe(IV)-dominated to SO<sub>4</sub><sup>•-</sup>-dominated mechanisms, thereby enhancing pollutant removal efficiencies.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":"15864-15873"},"PeriodicalIF":11.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering the Formation of Fe(IV) in the Fe(II)/Peroxydisulfate Process: The Critical Role of Sulfate Radical.\",\"authors\":\"Guang Li, Yiqiao Zhang, Xue Zhang, Jian Zhang, Bo Sun\",\"doi\":\"10.1021/acs.est.4c06675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study delves into the formation of ferryl ions (Fe(IV)) within the Fe(II)/peroxydisulfate (PDS) process, a pivotal reaction in advanced oxidation processes (AOPs) aimed at organic pollutant removal. Our findings challenge the conventional view that Fe(IV) predominantly forms through oxygen transfer from PDS to Fe(II), revealing that sulfate radicals (SO<sub>4</sub><sup>•-</sup>) play a crucial role in Fe(IV) generation. By employing competitive kinetics, the second-order rate constant for Fe(III) oxidation by SO<sub>4</sub><sup>•-</sup> was quantified as 4.58 × 10<sup>8</sup> M<sup>-1</sup> s<sup>-1</sup>. Factors such as the probe compound concentration, chloride presence, and iron species influence Fe(IV) generation, all of which were systematically evaluated. Additionally, the study explores Fe(IV) formation in various Fe(II)-activated AOPs, demonstrating that precursors like peroxymonosulfate and H<sub>2</sub>O<sub>2</sub> can also directly oxidize Fe(II) to Fe(IV). Through experimental data, kinetic modeling, and oxygen-18 labeling experiments, this research offers a comprehensive understanding of the Fe(II)/PDS system, facilitating the optimization of AOPs for pollutant degradation. Finally, introducing HSO<sub>3</sub><sup>-</sup> was proposed to shift the Fe(II)/PDS process from Fe(IV)-dominated to SO<sub>4</sub><sup>•-</sup>-dominated mechanisms, thereby enhancing pollutant removal efficiencies.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\" \",\"pages\":\"15864-15873\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c06675\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c06675","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究深入探讨了铁(II)/过氧化二硫酸盐(PDS)过程中渡酰离子(Fe(IV))的形成,该过程是以去除有机污染物为目的的高级氧化过程(AOP)中的一个关键反应。我们的研究结果挑战了铁(IV)主要通过从过氧化二硫酸盐到铁(II)的氧转移形成的传统观点,揭示了硫酸根自由基(SO4--)在铁(IV)生成中的关键作用。通过采用竞争动力学,SO4--氧化 Fe(III)的二阶速率常数被定量为 4.58 × 108 M-1 s-1。探针化合物浓度、氯化物的存在和铁的种类等因素都会影响铁(IV)的生成,所有这些因素都得到了系统的评估。此外,该研究还探讨了各种铁(II)活化 AOP 中铁(IV)的形成,证明过一硫酸盐和 H2O2 等前体也能直接将铁(II)氧化成铁(IV)。通过实验数据、动力学建模和氧-18 标记实验,该研究提供了对 Fe(II)/PDS 系统的全面了解,有助于优化污染物降解的 AOP。最后,研究人员提出引入 HSO3- 可使 Fe(II)/PDS 过程从以 Fe(IV) 为主导的机制转变为以 SO4 为主导的机制,从而提高污染物的去除效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deciphering the Formation of Fe(IV) in the Fe(II)/Peroxydisulfate Process: The Critical Role of Sulfate Radical.

Deciphering the Formation of Fe(IV) in the Fe(II)/Peroxydisulfate Process: The Critical Role of Sulfate Radical.

This study delves into the formation of ferryl ions (Fe(IV)) within the Fe(II)/peroxydisulfate (PDS) process, a pivotal reaction in advanced oxidation processes (AOPs) aimed at organic pollutant removal. Our findings challenge the conventional view that Fe(IV) predominantly forms through oxygen transfer from PDS to Fe(II), revealing that sulfate radicals (SO4•-) play a crucial role in Fe(IV) generation. By employing competitive kinetics, the second-order rate constant for Fe(III) oxidation by SO4•- was quantified as 4.58 × 108 M-1 s-1. Factors such as the probe compound concentration, chloride presence, and iron species influence Fe(IV) generation, all of which were systematically evaluated. Additionally, the study explores Fe(IV) formation in various Fe(II)-activated AOPs, demonstrating that precursors like peroxymonosulfate and H2O2 can also directly oxidize Fe(II) to Fe(IV). Through experimental data, kinetic modeling, and oxygen-18 labeling experiments, this research offers a comprehensive understanding of the Fe(II)/PDS system, facilitating the optimization of AOPs for pollutant degradation. Finally, introducing HSO3- was proposed to shift the Fe(II)/PDS process from Fe(IV)-dominated to SO4•--dominated mechanisms, thereby enhancing pollutant removal efficiencies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信