Adam M Weiss, Marcos A Lopez, Matthew G Rosenberger, Jeremiah Y Kim, Jingjing Shen, Qing Chen, Trevor Ung, Udoka M Ibeh, Hannah Riley Knight, Nakisha S Rutledge, Bradley Studnitzer, Stuart J Rowan, Aaron P Esser-Kahn
{"title":"鉴定 CDK4/6 抑制剂作为促进 IL-1β 分泌和 T 细胞佐剂的小分子 NLRP3 炎症小体激活剂。","authors":"Adam M Weiss, Marcos A Lopez, Matthew G Rosenberger, Jeremiah Y Kim, Jingjing Shen, Qing Chen, Trevor Ung, Udoka M Ibeh, Hannah Riley Knight, Nakisha S Rutledge, Bradley Studnitzer, Stuart J Rowan, Aaron P Esser-Kahn","doi":"10.1021/acs.jmedchem.4c00516","DOIUrl":null,"url":null,"abstract":"<p><p>Several FDA-approved adjuvants signal through the NLRP3 inflammasome and IL-1β release. Identifying small molecules that induce IL-1β release could allow targeted delivery and structure-function optimization, thereby improving safety and efficacy of next-generation adjuvants. In this work, we leverage our existing high throughput data set to identify small molecules that induce IL-1β release. We find that ribociclib induces IL-1β release when coadministered with a TLR4 agonist in an NLRP3- and caspase-dependent fashion. Ribociclib was formulated with a TLR4 agonist into liposomes, which were used as an adjuvant in an ovalbumin prophylactic vaccine model. The liposomes induced antigen-specific immunity in an IL-1 receptor-dependent fashion. Furthermore, the liposomes were coadministered with a tumor antigen and used in a therapeutic cancer vaccine, where they facilitated rejection of E.G7-OVA tumors. While further chemical optimization of the ribociclib scaffold is needed, this study provides proof-of-concept for its use as an IL-1 producing adjuvant in various immunotherapeutic contexts.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of CDK4/6 Inhibitors as Small Molecule NLRP3 Inflammasome Activators that Facilitate IL-1β Secretion and T Cell Adjuvanticity.\",\"authors\":\"Adam M Weiss, Marcos A Lopez, Matthew G Rosenberger, Jeremiah Y Kim, Jingjing Shen, Qing Chen, Trevor Ung, Udoka M Ibeh, Hannah Riley Knight, Nakisha S Rutledge, Bradley Studnitzer, Stuart J Rowan, Aaron P Esser-Kahn\",\"doi\":\"10.1021/acs.jmedchem.4c00516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several FDA-approved adjuvants signal through the NLRP3 inflammasome and IL-1β release. Identifying small molecules that induce IL-1β release could allow targeted delivery and structure-function optimization, thereby improving safety and efficacy of next-generation adjuvants. In this work, we leverage our existing high throughput data set to identify small molecules that induce IL-1β release. We find that ribociclib induces IL-1β release when coadministered with a TLR4 agonist in an NLRP3- and caspase-dependent fashion. Ribociclib was formulated with a TLR4 agonist into liposomes, which were used as an adjuvant in an ovalbumin prophylactic vaccine model. The liposomes induced antigen-specific immunity in an IL-1 receptor-dependent fashion. Furthermore, the liposomes were coadministered with a tumor antigen and used in a therapeutic cancer vaccine, where they facilitated rejection of E.G7-OVA tumors. While further chemical optimization of the ribociclib scaffold is needed, this study provides proof-of-concept for its use as an IL-1 producing adjuvant in various immunotherapeutic contexts.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jmedchem.4c00516\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c00516","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Identification of CDK4/6 Inhibitors as Small Molecule NLRP3 Inflammasome Activators that Facilitate IL-1β Secretion and T Cell Adjuvanticity.
Several FDA-approved adjuvants signal through the NLRP3 inflammasome and IL-1β release. Identifying small molecules that induce IL-1β release could allow targeted delivery and structure-function optimization, thereby improving safety and efficacy of next-generation adjuvants. In this work, we leverage our existing high throughput data set to identify small molecules that induce IL-1β release. We find that ribociclib induces IL-1β release when coadministered with a TLR4 agonist in an NLRP3- and caspase-dependent fashion. Ribociclib was formulated with a TLR4 agonist into liposomes, which were used as an adjuvant in an ovalbumin prophylactic vaccine model. The liposomes induced antigen-specific immunity in an IL-1 receptor-dependent fashion. Furthermore, the liposomes were coadministered with a tumor antigen and used in a therapeutic cancer vaccine, where they facilitated rejection of E.G7-OVA tumors. While further chemical optimization of the ribociclib scaffold is needed, this study provides proof-of-concept for its use as an IL-1 producing adjuvant in various immunotherapeutic contexts.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.