植物修复对受石油污染的亚北极土壤中植物演替和土壤微生物群落的长期影响

IF 5.8 2区 农林科学 Q1 SOIL SCIENCE
Soil Pub Date : 2024-08-19 DOI:10.5194/soil-10-551-2024
Mary-Cathrine Leewis, Christopher Kasanke, Ondrej Uhlik, Mary Beth Leigh
{"title":"植物修复对受石油污染的亚北极土壤中植物演替和土壤微生物群落的长期影响","authors":"Mary-Cathrine Leewis, Christopher Kasanke, Ondrej Uhlik, Mary Beth Leigh","doi":"10.5194/soil-10-551-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Phytoremediation can be a cost-effective method of restoring contaminated soils using plants and associated microorganisms. Most studies follow the impacts of phytoremediation solely across the treatment period and have not explored long-term ecological effects. In 1995, a phytoremediation study was initiated near Fairbanks, Alaska, to determine how the introduction of annual grasses and/or fertilizer would influence degradation of petroleum hydrocarbons (PHCs). After 1 year, grass and/or fertilizer-treated soils showed greater decreases in PHC concentrations compared to untreated plots. The site was then left for 15 years with no active site management. In 2011, we re-examined the site to explore the legacy of phytoremediation on contaminant disappearance, as well as on plant and soil microbial ecology. We found that the recruited vegetation and the current bulk soil microbial community structure and functioning were all heavily influenced by initial phytoremediation treatment. The number of diesel-degrading microorganisms (DDMs) was positively correlated with the percentage cover of vegetation at the site, which was influenced by initial treatment. Even 15 years later, the initial use of fertilizer had significant effects on microbial biomass, community structure, and activity. We conclude that phytoremediation treatment has long-term, legacy effects on the plant community, which, in turn, impact microbial community structure and functioning. It is therefore important to consider phytoremediation strategies that not only influence site remediation rates in the short-term but also prime the site for the restoration of vegetation over the long-term.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"8 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term legacy of phytoremediation on plant succession and soil microbial communities in petroleum-contaminated sub-Arctic soils\",\"authors\":\"Mary-Cathrine Leewis, Christopher Kasanke, Ondrej Uhlik, Mary Beth Leigh\",\"doi\":\"10.5194/soil-10-551-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Phytoremediation can be a cost-effective method of restoring contaminated soils using plants and associated microorganisms. Most studies follow the impacts of phytoremediation solely across the treatment period and have not explored long-term ecological effects. In 1995, a phytoremediation study was initiated near Fairbanks, Alaska, to determine how the introduction of annual grasses and/or fertilizer would influence degradation of petroleum hydrocarbons (PHCs). After 1 year, grass and/or fertilizer-treated soils showed greater decreases in PHC concentrations compared to untreated plots. The site was then left for 15 years with no active site management. In 2011, we re-examined the site to explore the legacy of phytoremediation on contaminant disappearance, as well as on plant and soil microbial ecology. We found that the recruited vegetation and the current bulk soil microbial community structure and functioning were all heavily influenced by initial phytoremediation treatment. The number of diesel-degrading microorganisms (DDMs) was positively correlated with the percentage cover of vegetation at the site, which was influenced by initial treatment. Even 15 years later, the initial use of fertilizer had significant effects on microbial biomass, community structure, and activity. We conclude that phytoremediation treatment has long-term, legacy effects on the plant community, which, in turn, impact microbial community structure and functioning. It is therefore important to consider phytoremediation strategies that not only influence site remediation rates in the short-term but also prime the site for the restoration of vegetation over the long-term.\",\"PeriodicalId\":48610,\"journal\":{\"name\":\"Soil\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5194/soil-10-551-2024\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/soil-10-551-2024","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要植物修复是利用植物和相关微生物恢复受污染土壤的一种经济有效的方法。大多数研究仅跟踪植物修复在处理期间产生的影响,而没有探讨长期的生态效应。1995 年,在阿拉斯加费尔班克斯附近启动了一项植物修复研究,以确定引入一年生草类和/或肥料将如何影响石油碳氢化合物 (PHC) 的降解。1 年后,与未经处理的地块相比,经过草和/或肥料处理的土壤显示出更大的 PHC 浓度下降。之后,我们将该场地放置了 15 年,没有进行任何积极的场地管理。2011 年,我们重新考察了该地点,以探索植物修复对污染物消失以及植物和土壤微生物生态的影响。我们发现,新加入的植被和当前的大体积土壤微生物群落结构和功能都受到最初植物修复处理的严重影响。柴油降解微生物(DDMs)的数量与现场植被覆盖率呈正相关,而植被覆盖率又受初始处理的影响。即使在 15 年后,最初使用肥料对微生物的生物量、群落结构和活性也有显著影响。我们的结论是,植物修复处理会对植物群落产生长期、遗留的影响,进而影响微生物群落的结构和功能。因此,重要的是要考虑植物修复策略,不仅要在短期内影响场地修复率,还要为长期植被恢复做好准备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-term legacy of phytoremediation on plant succession and soil microbial communities in petroleum-contaminated sub-Arctic soils
Abstract. Phytoremediation can be a cost-effective method of restoring contaminated soils using plants and associated microorganisms. Most studies follow the impacts of phytoremediation solely across the treatment period and have not explored long-term ecological effects. In 1995, a phytoremediation study was initiated near Fairbanks, Alaska, to determine how the introduction of annual grasses and/or fertilizer would influence degradation of petroleum hydrocarbons (PHCs). After 1 year, grass and/or fertilizer-treated soils showed greater decreases in PHC concentrations compared to untreated plots. The site was then left for 15 years with no active site management. In 2011, we re-examined the site to explore the legacy of phytoremediation on contaminant disappearance, as well as on plant and soil microbial ecology. We found that the recruited vegetation and the current bulk soil microbial community structure and functioning were all heavily influenced by initial phytoremediation treatment. The number of diesel-degrading microorganisms (DDMs) was positively correlated with the percentage cover of vegetation at the site, which was influenced by initial treatment. Even 15 years later, the initial use of fertilizer had significant effects on microbial biomass, community structure, and activity. We conclude that phytoremediation treatment has long-term, legacy effects on the plant community, which, in turn, impact microbial community structure and functioning. It is therefore important to consider phytoremediation strategies that not only influence site remediation rates in the short-term but also prime the site for the restoration of vegetation over the long-term.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil
Soil Agricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍: SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences. SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信