Calvin H. Lin , Chenghao Wan , Zhennan Ru , Connor Cremers , Pinak Mohapatra , Dolly L. Mantle , Kesha Tamakuwala , Ariana B. Höfelmann , Matthew W. Kanan , Juan Rivas-Davila , Jonathan A. Fan
{"title":"采用高频超材料反应器的电气化热化学反应系统","authors":"Calvin H. Lin , Chenghao Wan , Zhennan Ru , Connor Cremers , Pinak Mohapatra , Dolly L. Mantle , Kesha Tamakuwala , Ariana B. Höfelmann , Matthew W. Kanan , Juan Rivas-Davila , Jonathan A. Fan","doi":"10.1016/j.joule.2024.07.017","DOIUrl":null,"url":null,"abstract":"<div><div>We present metamaterial reactors as an innovative class of electrified thermochemical reactors that utilize high-frequency magnetic induction of an open-lattice metamaterial baffle to generate volumetric heat. A central design feature is the modeling of the metamaterial as an effective electrically conducting medium, abstracting its detailed microscopic geometry to a macroscopic susceptor description suitable for reactor-scale electromagnetic characterization. Co-design of the power electronics with the metamaterial provides design rules for efficient and volumetric heating, including the requirement for high induction frequencies. We implement lab-scale reactors with ceramic metamaterial baffles (39 mm in diameter) and megahertz-frequency power amplifiers to perform the reverse water-gas shift reaction, demonstrating reactor operation with near-unity heating efficiencies and radially uniform heating profiles. These clean energy concepts provide a broader context for structured reactors in which volumetric internal heating and complementary reaction engineering properties are collectively tailored to enable ideal operation regimes.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":null,"pages":null},"PeriodicalIF":38.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrified thermochemical reaction systems with high-frequency metamaterial reactors\",\"authors\":\"Calvin H. Lin , Chenghao Wan , Zhennan Ru , Connor Cremers , Pinak Mohapatra , Dolly L. Mantle , Kesha Tamakuwala , Ariana B. Höfelmann , Matthew W. Kanan , Juan Rivas-Davila , Jonathan A. Fan\",\"doi\":\"10.1016/j.joule.2024.07.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present metamaterial reactors as an innovative class of electrified thermochemical reactors that utilize high-frequency magnetic induction of an open-lattice metamaterial baffle to generate volumetric heat. A central design feature is the modeling of the metamaterial as an effective electrically conducting medium, abstracting its detailed microscopic geometry to a macroscopic susceptor description suitable for reactor-scale electromagnetic characterization. Co-design of the power electronics with the metamaterial provides design rules for efficient and volumetric heating, including the requirement for high induction frequencies. We implement lab-scale reactors with ceramic metamaterial baffles (39 mm in diameter) and megahertz-frequency power amplifiers to perform the reverse water-gas shift reaction, demonstrating reactor operation with near-unity heating efficiencies and radially uniform heating profiles. These clean energy concepts provide a broader context for structured reactors in which volumetric internal heating and complementary reaction engineering properties are collectively tailored to enable ideal operation regimes.</div></div>\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":38.6000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542435124003465\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124003465","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Electrified thermochemical reaction systems with high-frequency metamaterial reactors
We present metamaterial reactors as an innovative class of electrified thermochemical reactors that utilize high-frequency magnetic induction of an open-lattice metamaterial baffle to generate volumetric heat. A central design feature is the modeling of the metamaterial as an effective electrically conducting medium, abstracting its detailed microscopic geometry to a macroscopic susceptor description suitable for reactor-scale electromagnetic characterization. Co-design of the power electronics with the metamaterial provides design rules for efficient and volumetric heating, including the requirement for high induction frequencies. We implement lab-scale reactors with ceramic metamaterial baffles (39 mm in diameter) and megahertz-frequency power amplifiers to perform the reverse water-gas shift reaction, demonstrating reactor operation with near-unity heating efficiencies and radially uniform heating profiles. These clean energy concepts provide a broader context for structured reactors in which volumetric internal heating and complementary reaction engineering properties are collectively tailored to enable ideal operation regimes.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.