{"title":"流体驱动导向场设计实现了多稳态结构的多功能部署","authors":"Yaron Veksler, Ezra Ben-Abu, Amir D. Gat","doi":"10.1002/aisy.202470039","DOIUrl":null,"url":null,"abstract":"<p><b>Fluid-Driven Director-Field Design</b>\n </p><p>In article number 2400179, Yaron Veksler and co-workers present a modular platform of interconnected multi-stable tubes that can transform into a wide range of desired shapes on demand. Using detachable links designed based on director-field theory and viscous fluid actuation, they easily control the shape morphing process. This enables dramatic changes in the final shape while unlocking numerous intermediate configurations. Their method opens new possibilities for deployable structures in applications ranging from soft robotics to medical devices and space exploration.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202470039","citationCount":"0","resultStr":"{\"title\":\"Fluid-Driven Director-Field Design Enables Versatile Deployment of Multistable Structures\",\"authors\":\"Yaron Veksler, Ezra Ben-Abu, Amir D. Gat\",\"doi\":\"10.1002/aisy.202470039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Fluid-Driven Director-Field Design</b>\\n </p><p>In article number 2400179, Yaron Veksler and co-workers present a modular platform of interconnected multi-stable tubes that can transform into a wide range of desired shapes on demand. Using detachable links designed based on director-field theory and viscous fluid actuation, they easily control the shape morphing process. This enables dramatic changes in the final shape while unlocking numerous intermediate configurations. Their method opens new possibilities for deployable structures in applications ranging from soft robotics to medical devices and space exploration.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202470039\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202470039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202470039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Fluid-Driven Director-Field Design Enables Versatile Deployment of Multistable Structures
Fluid-Driven Director-Field Design
In article number 2400179, Yaron Veksler and co-workers present a modular platform of interconnected multi-stable tubes that can transform into a wide range of desired shapes on demand. Using detachable links designed based on director-field theory and viscous fluid actuation, they easily control the shape morphing process. This enables dramatic changes in the final shape while unlocking numerous intermediate configurations. Their method opens new possibilities for deployable structures in applications ranging from soft robotics to medical devices and space exploration.