显微镜技术的进步揭示了细胞动态

IF 6 2区 生物学 Q1 CELL BIOLOGY
{"title":"显微镜技术的进步揭示了细胞动态","authors":"","doi":"10.1016/j.ceb.2024.102418","DOIUrl":null,"url":null,"abstract":"<div><p>Cell biology emerges from spatiotemporally coordinated molecular processes. Recent advances in live-cell microscopy, fueled by a surge in optical, molecular, and computational technologies, have enabled dynamic observations from single molecules to whole organisms. Despite technological leaps, there is still an untapped opportunity to fully leverage their capabilities toward biological insight. We highlight how single-molecule imaging has transformed our understanding of biological processes, with a focus on chromatin organization and transcription in the nucleus. We describe how this was enabled by the close integration of new imaging techniques with analysis tools and discuss the challenges to make a comparable impact at larger scales from organelles to organisms. By highlighting recent successful examples, we describe an outlook of ever-increasing data and the need for seamless integration between dataset visualization and quantification to realize the full potential warranted by advances in new imaging technologies.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell dynamics revealed by microscopy advances\",\"authors\":\"\",\"doi\":\"10.1016/j.ceb.2024.102418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cell biology emerges from spatiotemporally coordinated molecular processes. Recent advances in live-cell microscopy, fueled by a surge in optical, molecular, and computational technologies, have enabled dynamic observations from single molecules to whole organisms. Despite technological leaps, there is still an untapped opportunity to fully leverage their capabilities toward biological insight. We highlight how single-molecule imaging has transformed our understanding of biological processes, with a focus on chromatin organization and transcription in the nucleus. We describe how this was enabled by the close integration of new imaging techniques with analysis tools and discuss the challenges to make a comparable impact at larger scales from organelles to organisms. By highlighting recent successful examples, we describe an outlook of ever-increasing data and the need for seamless integration between dataset visualization and quantification to realize the full potential warranted by advances in new imaging technologies.</p></div>\",\"PeriodicalId\":50608,\"journal\":{\"name\":\"Current Opinion in Cell Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955067424000978\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067424000978","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞生物学产生于时空协调的分子过程。在光学、分子和计算技术激增的推动下,活细胞显微镜的最新进展实现了从单个分子到整个生物体的动态观察。尽管技术上有了飞跃,但要充分利用它们的能力来深入了解生物学,仍有很多机会尚未开发。我们着重介绍了单分子成像如何改变了我们对生物过程的理解,重点是细胞核中的染色质组织和转录。我们描述了新成像技术与分析工具的紧密结合是如何实现这一目标的,并讨论了在更大范围(从细胞器到生物体)产生类似影响所面临的挑战。通过强调最近的成功案例,我们描述了数据不断增加的前景,以及数据集可视化和量化之间无缝整合的必要性,以充分发挥新成像技术进步所带来的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cell dynamics revealed by microscopy advances

Cell biology emerges from spatiotemporally coordinated molecular processes. Recent advances in live-cell microscopy, fueled by a surge in optical, molecular, and computational technologies, have enabled dynamic observations from single molecules to whole organisms. Despite technological leaps, there is still an untapped opportunity to fully leverage their capabilities toward biological insight. We highlight how single-molecule imaging has transformed our understanding of biological processes, with a focus on chromatin organization and transcription in the nucleus. We describe how this was enabled by the close integration of new imaging techniques with analysis tools and discuss the challenges to make a comparable impact at larger scales from organelles to organisms. By highlighting recent successful examples, we describe an outlook of ever-increasing data and the need for seamless integration between dataset visualization and quantification to realize the full potential warranted by advances in new imaging technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Cell Biology
Current Opinion in Cell Biology 生物-细胞生物学
CiteScore
14.60
自引率
1.30%
发文量
79
审稿时长
93 days
期刊介绍: Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings. COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信