{"title":"开枪 30 分钟后,枪手的手、前臂、脸和鼻孔中的有机和无机枪击残留物","authors":"Virginie Redouté Minzière, Céline Weyermann","doi":"10.1016/j.scijus.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>During the investigation of firearm-related incidents, gunshot residues (GSR) can be collected on the scene and individuals (e.g., shooters or bystanders). Their analysis can give valuable information for the reconstruction of the events. Since GSR collection on persons of interest generally occurs a few minutes to hours after discharge, knowledge is needed to understand how organic (O), and inorganic (I) residues are transferred and persist. In this research, the quantities of OGSR and IGSR were assessed on the right and left hands, forearms, face, and nostrils of four shooters. Specimens were collected immediately before the discharge (shooter’s blank specimens) and shortly after (30 min) using carbon adhesive stubs. Organic compounds were first extracted from the collection device and analysed using ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Subsequently, IGSR particles were detected on the same stub using scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM/EDS). Shooter’s blank specimen analysis revealed background contamination of both O and IGSR in the shooter’s environment, predominantly attributed to the presence of an indoor shooting range. However, the background quantities generally remained below the associated 30-minute specimen. Thirty minutes after a discharge, higher quantities were generally detected on the shooter’s right and left hands than on other collection regions for both GSR types. Forearms and face emerged as interesting collection alternatives, especially in cases where a person of interest may have washed their hands in the interval between the discharge and collection. In contrast, very low amounts of GSR were detected in the nostrils. Furthermore, the results indicated that OGSR and IGSR have different transfer and persistence mechanisms.</p></div>","PeriodicalId":49565,"journal":{"name":"Science & Justice","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355030624000765/pdfft?md5=29df7f206691f54db449a28e54a13fb1&pid=1-s2.0-S1355030624000765-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Organic and inorganic gunshot residues on the hands, forearms, face, and nostrils of shooters 30 min after a discharge\",\"authors\":\"Virginie Redouté Minzière, Céline Weyermann\",\"doi\":\"10.1016/j.scijus.2024.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>During the investigation of firearm-related incidents, gunshot residues (GSR) can be collected on the scene and individuals (e.g., shooters or bystanders). Their analysis can give valuable information for the reconstruction of the events. Since GSR collection on persons of interest generally occurs a few minutes to hours after discharge, knowledge is needed to understand how organic (O), and inorganic (I) residues are transferred and persist. In this research, the quantities of OGSR and IGSR were assessed on the right and left hands, forearms, face, and nostrils of four shooters. Specimens were collected immediately before the discharge (shooter’s blank specimens) and shortly after (30 min) using carbon adhesive stubs. Organic compounds were first extracted from the collection device and analysed using ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Subsequently, IGSR particles were detected on the same stub using scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM/EDS). Shooter’s blank specimen analysis revealed background contamination of both O and IGSR in the shooter’s environment, predominantly attributed to the presence of an indoor shooting range. However, the background quantities generally remained below the associated 30-minute specimen. Thirty minutes after a discharge, higher quantities were generally detected on the shooter’s right and left hands than on other collection regions for both GSR types. Forearms and face emerged as interesting collection alternatives, especially in cases where a person of interest may have washed their hands in the interval between the discharge and collection. In contrast, very low amounts of GSR were detected in the nostrils. Furthermore, the results indicated that OGSR and IGSR have different transfer and persistence mechanisms.</p></div>\",\"PeriodicalId\":49565,\"journal\":{\"name\":\"Science & Justice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1355030624000765/pdfft?md5=29df7f206691f54db449a28e54a13fb1&pid=1-s2.0-S1355030624000765-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science & Justice\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1355030624000765\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science & Justice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1355030624000765","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
Organic and inorganic gunshot residues on the hands, forearms, face, and nostrils of shooters 30 min after a discharge
During the investigation of firearm-related incidents, gunshot residues (GSR) can be collected on the scene and individuals (e.g., shooters or bystanders). Their analysis can give valuable information for the reconstruction of the events. Since GSR collection on persons of interest generally occurs a few minutes to hours after discharge, knowledge is needed to understand how organic (O), and inorganic (I) residues are transferred and persist. In this research, the quantities of OGSR and IGSR were assessed on the right and left hands, forearms, face, and nostrils of four shooters. Specimens were collected immediately before the discharge (shooter’s blank specimens) and shortly after (30 min) using carbon adhesive stubs. Organic compounds were first extracted from the collection device and analysed using ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Subsequently, IGSR particles were detected on the same stub using scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM/EDS). Shooter’s blank specimen analysis revealed background contamination of both O and IGSR in the shooter’s environment, predominantly attributed to the presence of an indoor shooting range. However, the background quantities generally remained below the associated 30-minute specimen. Thirty minutes after a discharge, higher quantities were generally detected on the shooter’s right and left hands than on other collection regions for both GSR types. Forearms and face emerged as interesting collection alternatives, especially in cases where a person of interest may have washed their hands in the interval between the discharge and collection. In contrast, very low amounts of GSR were detected in the nostrils. Furthermore, the results indicated that OGSR and IGSR have different transfer and persistence mechanisms.
期刊介绍:
Science & Justice provides a forum to promote communication and publication of original articles, reviews and correspondence on subjects that spark debates within the Forensic Science Community and the criminal justice sector. The journal provides a medium whereby all aspects of applying science to legal proceedings can be debated and progressed. Science & Justice is published six times a year, and will be of interest primarily to practising forensic scientists and their colleagues in related fields. It is chiefly concerned with the publication of formal scientific papers, in keeping with its international learned status, but will not accept any article describing experimentation on animals which does not meet strict ethical standards.
Promote communication and informed debate within the Forensic Science Community and the criminal justice sector.
To promote the publication of learned and original research findings from all areas of the forensic sciences and by so doing to advance the profession.
To promote the publication of case based material by way of case reviews.
To promote the publication of conference proceedings which are of interest to the forensic science community.
To provide a medium whereby all aspects of applying science to legal proceedings can be debated and progressed.
To appeal to all those with an interest in the forensic sciences.