Morgan C. Woods , Cameron K. Brooks , Joshua M. Pearce
{"title":"用于研究聚合物材料性能的开源冷热科学片材压机","authors":"Morgan C. Woods , Cameron K. Brooks , Joshua M. Pearce","doi":"10.1016/j.ohx.2024.e00566","DOIUrl":null,"url":null,"abstract":"<div><p>To produce samples for both material testing and molded sheets/parts, this article details an open-source scientific cold and hot press design. It consists of two independent and modular upper and lower plate (929 cm<sup>2</sup>) assemblies each containing four 125 W insulated steel strip heaters. The steel housing for these heaters is entirely modular and designed for ease of manufacture, assembly, and customization. This system allows a researcher with access to a hydraulic press to repurpose existing equipment into a multipurpose hot and cold press, or if an independent machine is warranted, an additional welded support frame and commercially available bottle jack offer standalone operation. By utilizing this small-scale hot press either in conjunction with a hydraulic press or on its own, samples can be produced to determine the critical material properties of any polymer, composite, or polymer blend. A series of modular molds allow for the rapid production of flat sheet stock and solid testing samples adhering to the ASTM D695 standard for rigid plastics tested in compression and ASTM D638 standard for testing plastics in tension. The sheet mold offers the user the ability to produce stock sheets that can be cut and assembled into 2.5-D applications with post processing.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"19 ","pages":"Article e00566"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000609/pdfft?md5=fcdc3df69632c08ca4f761cf1e1b9b39&pid=1-s2.0-S2468067224000609-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Open-source cold and hot scientific sheet press for investigating polymer-based material properties\",\"authors\":\"Morgan C. Woods , Cameron K. Brooks , Joshua M. Pearce\",\"doi\":\"10.1016/j.ohx.2024.e00566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To produce samples for both material testing and molded sheets/parts, this article details an open-source scientific cold and hot press design. It consists of two independent and modular upper and lower plate (929 cm<sup>2</sup>) assemblies each containing four 125 W insulated steel strip heaters. The steel housing for these heaters is entirely modular and designed for ease of manufacture, assembly, and customization. This system allows a researcher with access to a hydraulic press to repurpose existing equipment into a multipurpose hot and cold press, or if an independent machine is warranted, an additional welded support frame and commercially available bottle jack offer standalone operation. By utilizing this small-scale hot press either in conjunction with a hydraulic press or on its own, samples can be produced to determine the critical material properties of any polymer, composite, or polymer blend. A series of modular molds allow for the rapid production of flat sheet stock and solid testing samples adhering to the ASTM D695 standard for rigid plastics tested in compression and ASTM D638 standard for testing plastics in tension. The sheet mold offers the user the ability to produce stock sheets that can be cut and assembled into 2.5-D applications with post processing.</p></div>\",\"PeriodicalId\":37503,\"journal\":{\"name\":\"HardwareX\",\"volume\":\"19 \",\"pages\":\"Article e00566\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468067224000609/pdfft?md5=fcdc3df69632c08ca4f761cf1e1b9b39&pid=1-s2.0-S2468067224000609-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HardwareX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468067224000609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067224000609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Open-source cold and hot scientific sheet press for investigating polymer-based material properties
To produce samples for both material testing and molded sheets/parts, this article details an open-source scientific cold and hot press design. It consists of two independent and modular upper and lower plate (929 cm2) assemblies each containing four 125 W insulated steel strip heaters. The steel housing for these heaters is entirely modular and designed for ease of manufacture, assembly, and customization. This system allows a researcher with access to a hydraulic press to repurpose existing equipment into a multipurpose hot and cold press, or if an independent machine is warranted, an additional welded support frame and commercially available bottle jack offer standalone operation. By utilizing this small-scale hot press either in conjunction with a hydraulic press or on its own, samples can be produced to determine the critical material properties of any polymer, composite, or polymer blend. A series of modular molds allow for the rapid production of flat sheet stock and solid testing samples adhering to the ASTM D695 standard for rigid plastics tested in compression and ASTM D638 standard for testing plastics in tension. The sheet mold offers the user the ability to produce stock sheets that can be cut and assembled into 2.5-D applications with post processing.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.