Hai Nguyen Tran, Stéphane Simon, Jean-Claude Bollinger
{"title":"关于 \"以新型策略为介导的铁和植物提取物活化万寿菊废花高效去除污染水中的总砷(As3+/5+)\"的一些评论。","authors":"Hai Nguyen Tran, Stéphane Simon, Jean-Claude Bollinger","doi":"10.1016/j.chemosphere.2024.143063","DOIUrl":null,"url":null,"abstract":"<p><p>We explain here that the authors of the article cited in the title have misrepresented the species of As(III) and As(V) in solutions and, in particular, have neglected their speciation as a function of pH. Their discussion of (ad)sorption mechanisms is therefore unsatisfactory, especially since organic matter (flower waste) and the presence of iron oxyhydroxides should be taken into account. Furthermore, the modeling of (ad)sorption kinetics and isotherms was based on linearized equations, whereas the corresponding nonlinear equations should have been used. Therefore, we believe that the authors of the original article should make corrections and additions to it. This Letter to the Editor is motivated by a concern to avoid the dissemination of approximate or even incorrect concepts in the scientific literature, which could mislead novice researchers.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some remarks on \\\"Efficient removal of total arsenic (As<sup>3+/5+</sup>) from contaminated water by novel strategies mediated iron and plant extract activated waste flowers of marigold\\\".\",\"authors\":\"Hai Nguyen Tran, Stéphane Simon, Jean-Claude Bollinger\",\"doi\":\"10.1016/j.chemosphere.2024.143063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We explain here that the authors of the article cited in the title have misrepresented the species of As(III) and As(V) in solutions and, in particular, have neglected their speciation as a function of pH. Their discussion of (ad)sorption mechanisms is therefore unsatisfactory, especially since organic matter (flower waste) and the presence of iron oxyhydroxides should be taken into account. Furthermore, the modeling of (ad)sorption kinetics and isotherms was based on linearized equations, whereas the corresponding nonlinear equations should have been used. Therefore, we believe that the authors of the original article should make corrections and additions to it. This Letter to the Editor is motivated by a concern to avoid the dissemination of approximate or even incorrect concepts in the scientific literature, which could mislead novice researchers.</p>\",\"PeriodicalId\":93933,\"journal\":{\"name\":\"Chemosphere\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chemosphere.2024.143063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Some remarks on "Efficient removal of total arsenic (As3+/5+) from contaminated water by novel strategies mediated iron and plant extract activated waste flowers of marigold".
We explain here that the authors of the article cited in the title have misrepresented the species of As(III) and As(V) in solutions and, in particular, have neglected their speciation as a function of pH. Their discussion of (ad)sorption mechanisms is therefore unsatisfactory, especially since organic matter (flower waste) and the presence of iron oxyhydroxides should be taken into account. Furthermore, the modeling of (ad)sorption kinetics and isotherms was based on linearized equations, whereas the corresponding nonlinear equations should have been used. Therefore, we believe that the authors of the original article should make corrections and additions to it. This Letter to the Editor is motivated by a concern to avoid the dissemination of approximate or even incorrect concepts in the scientific literature, which could mislead novice researchers.