Liang Wang, Chunxiao Chen, Yueyue Xiao, Rongfang Gong, Jun Shen, Ming Lu
{"title":"胶质母细胞瘤 TTFields 中电极阵列布局的个性化优化策略","authors":"Liang Wang, Chunxiao Chen, Yueyue Xiao, Rongfang Gong, Jun Shen, Ming Lu","doi":"10.1002/cnm.3859","DOIUrl":null,"url":null,"abstract":"<p>Tumor treating fields (TTFields) is a novel therapeutic approach for the treatment of glioblastoma. The electric field intensity is a critical factor in the therapeutic efficacy of TTFields, as stronger electric field can more effectively impede the proliferation and survival of tumor cells. In this study, we aimed to improve the therapeutic effectiveness of TTFields by optimizing the position of electrode arrays, resulting in an increased electric field intensity at the tumor. Three representative head models of real glioblastoma patients were used as the research subjects in this study. The improved subtraction-average-based optimization (ISABO) algorithm based on circle chaos mapping, opposition-based learning and golden sine strategy, was employed to optimize the positions of the four sets of electrode arrays on the scalp. The electrode positions are dynamically adjusted through iterative search to maximize the electric field intensity at the tumor. The experimental results indicate that, in comparison to the conventional layout, the positions of the electrode arrays obtained by the ISABO algorithm can achieve average electric field intensity of 1.7887, 2.0058, and 1.3497 V/cm at the tumor of three glioblastoma patients, which are 23.6%, 29.4%, and 8.5% higher than the conventional layout, respectively. This study demonstrates that optimizing the location of the TTFields electrode array using the ISABO algorithm can effectively enhance the electric field intensity and treatment coverage in the tumor area, offering a more effective approach for personalized TTFields treatment.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"40 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personalized optimization strategy for electrode array layout in TTFields of glioblastoma\",\"authors\":\"Liang Wang, Chunxiao Chen, Yueyue Xiao, Rongfang Gong, Jun Shen, Ming Lu\",\"doi\":\"10.1002/cnm.3859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tumor treating fields (TTFields) is a novel therapeutic approach for the treatment of glioblastoma. The electric field intensity is a critical factor in the therapeutic efficacy of TTFields, as stronger electric field can more effectively impede the proliferation and survival of tumor cells. In this study, we aimed to improve the therapeutic effectiveness of TTFields by optimizing the position of electrode arrays, resulting in an increased electric field intensity at the tumor. Three representative head models of real glioblastoma patients were used as the research subjects in this study. The improved subtraction-average-based optimization (ISABO) algorithm based on circle chaos mapping, opposition-based learning and golden sine strategy, was employed to optimize the positions of the four sets of electrode arrays on the scalp. The electrode positions are dynamically adjusted through iterative search to maximize the electric field intensity at the tumor. The experimental results indicate that, in comparison to the conventional layout, the positions of the electrode arrays obtained by the ISABO algorithm can achieve average electric field intensity of 1.7887, 2.0058, and 1.3497 V/cm at the tumor of three glioblastoma patients, which are 23.6%, 29.4%, and 8.5% higher than the conventional layout, respectively. This study demonstrates that optimizing the location of the TTFields electrode array using the ISABO algorithm can effectively enhance the electric field intensity and treatment coverage in the tumor area, offering a more effective approach for personalized TTFields treatment.</p>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":\"40 10\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3859\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3859","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Personalized optimization strategy for electrode array layout in TTFields of glioblastoma
Tumor treating fields (TTFields) is a novel therapeutic approach for the treatment of glioblastoma. The electric field intensity is a critical factor in the therapeutic efficacy of TTFields, as stronger electric field can more effectively impede the proliferation and survival of tumor cells. In this study, we aimed to improve the therapeutic effectiveness of TTFields by optimizing the position of electrode arrays, resulting in an increased electric field intensity at the tumor. Three representative head models of real glioblastoma patients were used as the research subjects in this study. The improved subtraction-average-based optimization (ISABO) algorithm based on circle chaos mapping, opposition-based learning and golden sine strategy, was employed to optimize the positions of the four sets of electrode arrays on the scalp. The electrode positions are dynamically adjusted through iterative search to maximize the electric field intensity at the tumor. The experimental results indicate that, in comparison to the conventional layout, the positions of the electrode arrays obtained by the ISABO algorithm can achieve average electric field intensity of 1.7887, 2.0058, and 1.3497 V/cm at the tumor of three glioblastoma patients, which are 23.6%, 29.4%, and 8.5% higher than the conventional layout, respectively. This study demonstrates that optimizing the location of the TTFields electrode array using the ISABO algorithm can effectively enhance the electric field intensity and treatment coverage in the tumor area, offering a more effective approach for personalized TTFields treatment.
期刊介绍:
All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.