{"title":"辅助素是提高作物氮素利用效率、实现绿色农业的关键吗?","authors":"Shan Li","doi":"10.1111/nph.20066","DOIUrl":null,"url":null,"abstract":"<p><p>Strengthening future food security through the application of unsustainable levels of inorganic nitrogen (N) fertilizers to crop fields may exacerbate environmental damage. Coordination of N-use efficiency (NUE) and plant growth is, therefore, crucial for sustainable agriculture. Auxin plays pivotal roles in developmental and signaling responses that affect NUE. Hence, a better understanding of these processes provides great potential to improve crop NUE. This review summarizes the effects of auxin on N-related and root developmental processes that either directly or indirectly affect NUE in the model plant Arabidopsis and major crop species to highlight the potential of fostering sustainable agricultural development in the future through modulating auxin-related processes.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Is auxin the key to improve crop nitrogen use efficiency for greener agriculture?\",\"authors\":\"Shan Li\",\"doi\":\"10.1111/nph.20066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Strengthening future food security through the application of unsustainable levels of inorganic nitrogen (N) fertilizers to crop fields may exacerbate environmental damage. Coordination of N-use efficiency (NUE) and plant growth is, therefore, crucial for sustainable agriculture. Auxin plays pivotal roles in developmental and signaling responses that affect NUE. Hence, a better understanding of these processes provides great potential to improve crop NUE. This review summarizes the effects of auxin on N-related and root developmental processes that either directly or indirectly affect NUE in the model plant Arabidopsis and major crop species to highlight the potential of fostering sustainable agricultural development in the future through modulating auxin-related processes.</p>\",\"PeriodicalId\":48887,\"journal\":{\"name\":\"New Phytologist\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Phytologist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/nph.20066\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20066","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Is auxin the key to improve crop nitrogen use efficiency for greener agriculture?
Strengthening future food security through the application of unsustainable levels of inorganic nitrogen (N) fertilizers to crop fields may exacerbate environmental damage. Coordination of N-use efficiency (NUE) and plant growth is, therefore, crucial for sustainable agriculture. Auxin plays pivotal roles in developmental and signaling responses that affect NUE. Hence, a better understanding of these processes provides great potential to improve crop NUE. This review summarizes the effects of auxin on N-related and root developmental processes that either directly or indirectly affect NUE in the model plant Arabidopsis and major crop species to highlight the potential of fostering sustainable agricultural development in the future through modulating auxin-related processes.
期刊介绍:
New Phytologist is a leading publication that showcases exceptional and groundbreaking research in plant science and its practical applications. With a focus on five distinct sections - Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology - the journal covers a wide array of topics ranging from cellular processes to the impact of global environmental changes. We encourage the use of interdisciplinary approaches, and our content is structured to reflect this. Our journal acknowledges the diverse techniques employed in plant science, including molecular and cell biology, functional genomics, modeling, and system-based approaches, across various subfields.