{"title":"根据患者有效直径评估图像质量并确定计算机断层扫描的局部可接受质量剂量。","authors":"Nada Hasan, Chadia Rizk, Fatema Marzooq, Khalid Khan, Maryam AlKhaja, Esameldeen Babikir","doi":"10.1117/1.JMI.11.4.043502","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We aim to develop modified clinical indication (CI)-based image quality scoring criteria (IQSC) for assessing image quality (IQ) and establishing acceptable quality doses (AQDs) in adult computed tomography (CT) examinations, based on CIs and patient sizes.</p><p><strong>Approach: </strong>CT images, volume CT dose index ( <math> <mrow> <msub><mrow><mi>CTDI</mi></mrow> <mrow><mi>vol</mi></mrow> </msub> </mrow> </math> ), and dose length product (DLP) were collected retrospectively between September 2020 and September 2021 for eight common CIs from two CT scanners at a central hospital in the Kingdom of Bahrain. Using the modified CI-based IQSC and a Likert scale (0 to 4), three radiologists assessed the IQ of each examination. AQDs were then established as the median value of <math> <mrow> <msub><mrow><mi>CTDI</mi></mrow> <mrow><mi>vol</mi></mrow> </msub> </mrow> </math> and DLP for images with an average score of 3 and compared to national diagnostic reference levels (NDRLs).</p><p><strong>Results: </strong>Out of 581 examinations, 60 were excluded from the study due to average scores above or below 3. The established AQDs were lower than the NDRLs for all CIs, except <math><mrow><mi>AQDs</mi> <mo>/</mo> <msub><mrow><mi>CTDI</mi></mrow> <mrow><mi>vol</mi></mrow> </msub> </mrow> </math> for oncologic follow-up for large patients (28 versus 26 mGy) in scanner A, besides abdominal pain for medium patients (16 versus 15 mGy) and large patients (34 versus 27 mGy), and diverticulitis/appendicitis for medium patients (15 versus 12 mGy) and large patients (33 versus 30 mGy) in scanner B, indicating the need for optimization.</p><p><strong>Conclusions: </strong>CI-based IQSC is crucial for IQ assessment and establishing AQDs according to patient size. It identifies stations requiring optimization of patient radiation exposure.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 4","pages":"043502"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328147/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessment of image quality and establishment of local acceptable quality dose for computed tomography based on patient effective diameter.\",\"authors\":\"Nada Hasan, Chadia Rizk, Fatema Marzooq, Khalid Khan, Maryam AlKhaja, Esameldeen Babikir\",\"doi\":\"10.1117/1.JMI.11.4.043502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>We aim to develop modified clinical indication (CI)-based image quality scoring criteria (IQSC) for assessing image quality (IQ) and establishing acceptable quality doses (AQDs) in adult computed tomography (CT) examinations, based on CIs and patient sizes.</p><p><strong>Approach: </strong>CT images, volume CT dose index ( <math> <mrow> <msub><mrow><mi>CTDI</mi></mrow> <mrow><mi>vol</mi></mrow> </msub> </mrow> </math> ), and dose length product (DLP) were collected retrospectively between September 2020 and September 2021 for eight common CIs from two CT scanners at a central hospital in the Kingdom of Bahrain. Using the modified CI-based IQSC and a Likert scale (0 to 4), three radiologists assessed the IQ of each examination. AQDs were then established as the median value of <math> <mrow> <msub><mrow><mi>CTDI</mi></mrow> <mrow><mi>vol</mi></mrow> </msub> </mrow> </math> and DLP for images with an average score of 3 and compared to national diagnostic reference levels (NDRLs).</p><p><strong>Results: </strong>Out of 581 examinations, 60 were excluded from the study due to average scores above or below 3. The established AQDs were lower than the NDRLs for all CIs, except <math><mrow><mi>AQDs</mi> <mo>/</mo> <msub><mrow><mi>CTDI</mi></mrow> <mrow><mi>vol</mi></mrow> </msub> </mrow> </math> for oncologic follow-up for large patients (28 versus 26 mGy) in scanner A, besides abdominal pain for medium patients (16 versus 15 mGy) and large patients (34 versus 27 mGy), and diverticulitis/appendicitis for medium patients (15 versus 12 mGy) and large patients (33 versus 30 mGy) in scanner B, indicating the need for optimization.</p><p><strong>Conclusions: </strong>CI-based IQSC is crucial for IQ assessment and establishing AQDs according to patient size. It identifies stations requiring optimization of patient radiation exposure.</p>\",\"PeriodicalId\":47707,\"journal\":{\"name\":\"Journal of Medical Imaging\",\"volume\":\"11 4\",\"pages\":\"043502\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328147/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMI.11.4.043502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.4.043502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Assessment of image quality and establishment of local acceptable quality dose for computed tomography based on patient effective diameter.
Purpose: We aim to develop modified clinical indication (CI)-based image quality scoring criteria (IQSC) for assessing image quality (IQ) and establishing acceptable quality doses (AQDs) in adult computed tomography (CT) examinations, based on CIs and patient sizes.
Approach: CT images, volume CT dose index ( ), and dose length product (DLP) were collected retrospectively between September 2020 and September 2021 for eight common CIs from two CT scanners at a central hospital in the Kingdom of Bahrain. Using the modified CI-based IQSC and a Likert scale (0 to 4), three radiologists assessed the IQ of each examination. AQDs were then established as the median value of and DLP for images with an average score of 3 and compared to national diagnostic reference levels (NDRLs).
Results: Out of 581 examinations, 60 were excluded from the study due to average scores above or below 3. The established AQDs were lower than the NDRLs for all CIs, except for oncologic follow-up for large patients (28 versus 26 mGy) in scanner A, besides abdominal pain for medium patients (16 versus 15 mGy) and large patients (34 versus 27 mGy), and diverticulitis/appendicitis for medium patients (15 versus 12 mGy) and large patients (33 versus 30 mGy) in scanner B, indicating the need for optimization.
Conclusions: CI-based IQSC is crucial for IQ assessment and establishing AQDs according to patient size. It identifies stations requiring optimization of patient radiation exposure.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.