邻近地区对短轮灌木柳树及其杂交种的食草动物危害和化学特征的影响。

IF 3.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
{"title":"邻近地区对短轮灌木柳树及其杂交种的食草动物危害和化学特征的影响。","authors":"","doi":"10.1016/j.phytochem.2024.114249","DOIUrl":null,"url":null,"abstract":"<div><p>Short rotation coppices (SRCs) represent an important source of biomass. Since they are grown in various mixtures, SRCs represent an excellent opportunity for assessing the effects of local plant neighbourhoods on their performance. We used a common garden experiment consisting of plots that varied in genotype diversity of SRC willows to test for the effects of chemical traits of individual plants and chemical variation in the plots where they grew on insect herbivory. We also explored whether the composition of willows planted in a plot affected their chemistry. To do this, we performed untargeted metabolomics and quantified various chemical traits related to the total set of metabolites we detected, flavonoids, and salicinoids in four willow genotypes. We measured the leaf herbivory that the plants suffered. The genotypes differed in most chemical traits, yet we found only limited effects of individual traits on herbivory damage. Instead, herbivory damage was positively correlated with structural variation in salicinoids in a plot. When analysing the effects of plot chemical variation on herbivory damage separately for each genotype, we found both positive and negative correlations between the two, suggesting both associational resistance and susceptibility. Finally, we also observed a significant effect of the interaction between genotype and plot composition on structural variation in plant chemistry. Overall, our results suggest that high chemical variation in mixed willow SRCs does not necessarily lower the herbivory damage, possibly due to spillover effects of insect herbivores among genotypes. Our results also show that different genotypes respond differently to plot composition in terms of herbivory damage and chemical composition, which may affect their suitability for growing in mixed stands.</p></div>","PeriodicalId":20170,"journal":{"name":"Phytochemistry","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neighbourhood effects on herbivory damage and chemical profiles in short-rotation coppice willows and their hybrids\",\"authors\":\"\",\"doi\":\"10.1016/j.phytochem.2024.114249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Short rotation coppices (SRCs) represent an important source of biomass. Since they are grown in various mixtures, SRCs represent an excellent opportunity for assessing the effects of local plant neighbourhoods on their performance. We used a common garden experiment consisting of plots that varied in genotype diversity of SRC willows to test for the effects of chemical traits of individual plants and chemical variation in the plots where they grew on insect herbivory. We also explored whether the composition of willows planted in a plot affected their chemistry. To do this, we performed untargeted metabolomics and quantified various chemical traits related to the total set of metabolites we detected, flavonoids, and salicinoids in four willow genotypes. We measured the leaf herbivory that the plants suffered. The genotypes differed in most chemical traits, yet we found only limited effects of individual traits on herbivory damage. Instead, herbivory damage was positively correlated with structural variation in salicinoids in a plot. When analysing the effects of plot chemical variation on herbivory damage separately for each genotype, we found both positive and negative correlations between the two, suggesting both associational resistance and susceptibility. Finally, we also observed a significant effect of the interaction between genotype and plot composition on structural variation in plant chemistry. Overall, our results suggest that high chemical variation in mixed willow SRCs does not necessarily lower the herbivory damage, possibly due to spillover effects of insect herbivores among genotypes. Our results also show that different genotypes respond differently to plot composition in terms of herbivory damage and chemical composition, which may affect their suitability for growing in mixed stands.</p></div>\",\"PeriodicalId\":20170,\"journal\":{\"name\":\"Phytochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031942224002863\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031942224002863","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

短轮伐林(SRC)是生物量的重要来源。由于它们是以各种混合物的形式种植的,因此短轮伐林是评估当地植物群落对其性能影响的绝佳机会。我们利用一个由不同基因型的 SRC 柳树组成的共同花园实验来测试单株植物的化学特性和它们生长地块的化学变异对昆虫食草性的影响。我们还探讨了种植在小区内的柳树的组成是否会影响其化学性质。为此,我们在四种柳树基因型中进行了非靶向代谢组学研究,并量化了与我们检测到的全部代谢物、黄酮类化合物和水杨酸类化合物相关的各种化学性状。我们测量了植物遭受的叶片草食性。这些基因型在大多数化学性状上都存在差异,但我们发现单个性状对草食危害的影响有限。相反,草食危害与地块中水杨酸的结构变化呈正相关。在分别分析每个基因型的地块化学变异对草食性损害的影响时,我们发现两者之间既有正相关,也有负相关,这表明两者既有关联抗性,也有关联易感性。最后,我们还观察到基因型与地块组成之间的相互作用对植物化学结构变异的显著影响。总之,我们的研究结果表明,混交柳SRC的化学变异大并不一定会降低食草动物的危害,这可能是由于昆虫食草动物在不同基因型之间的溢出效应。我们的结果还表明,不同的基因型在食草动物危害和化学成分方面对地块组成的反应不同,这可能会影响它们在混交林中生长的适宜性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Neighbourhood effects on herbivory damage and chemical profiles in short-rotation coppice willows and their hybrids

Neighbourhood effects on herbivory damage and chemical profiles in short-rotation coppice willows and their hybrids

Short rotation coppices (SRCs) represent an important source of biomass. Since they are grown in various mixtures, SRCs represent an excellent opportunity for assessing the effects of local plant neighbourhoods on their performance. We used a common garden experiment consisting of plots that varied in genotype diversity of SRC willows to test for the effects of chemical traits of individual plants and chemical variation in the plots where they grew on insect herbivory. We also explored whether the composition of willows planted in a plot affected their chemistry. To do this, we performed untargeted metabolomics and quantified various chemical traits related to the total set of metabolites we detected, flavonoids, and salicinoids in four willow genotypes. We measured the leaf herbivory that the plants suffered. The genotypes differed in most chemical traits, yet we found only limited effects of individual traits on herbivory damage. Instead, herbivory damage was positively correlated with structural variation in salicinoids in a plot. When analysing the effects of plot chemical variation on herbivory damage separately for each genotype, we found both positive and negative correlations between the two, suggesting both associational resistance and susceptibility. Finally, we also observed a significant effect of the interaction between genotype and plot composition on structural variation in plant chemistry. Overall, our results suggest that high chemical variation in mixed willow SRCs does not necessarily lower the herbivory damage, possibly due to spillover effects of insect herbivores among genotypes. Our results also show that different genotypes respond differently to plot composition in terms of herbivory damage and chemical composition, which may affect their suitability for growing in mixed stands.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Phytochemistry
Phytochemistry 生物-植物科学
CiteScore
6.40
自引率
7.90%
发文量
443
审稿时长
39 days
期刊介绍: Phytochemistry is a leading international journal publishing studies of plant chemistry, biochemistry, molecular biology and genetics, structure and bioactivities of phytochemicals, including ''-omics'' and bioinformatics/computational biology approaches. Phytochemistry is a primary source for papers dealing with phytochemicals, especially reports concerning their biosynthesis, regulation, and biological properties both in planta and as bioactive principles. Articles are published online as soon as possible as Articles-in-Press and in 12 volumes per year. Occasional topic-focussed special issues are published composed of papers from invited authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信