Emily Yin Sing Chong, Haonan Wang, Kwan Ho Gordon Leung, Paul Kim, Yuko Tada, Tsun Hei Sin, Chun Ka Wong, Kwong Yue Eric Chan, Chor Cheung Frankie Tam, Mitchel Benovoy, Andrew E Arai, Victor Goh, Martin A Janich, Amit R Patel, Ming-Yen Ng
{"title":"通过心脏磁共振负荷灌注确定心肌血流和心肌灌注储备的双注射剂与双序列技术比较:来自 AQUA 联合会。","authors":"Emily Yin Sing Chong, Haonan Wang, Kwan Ho Gordon Leung, Paul Kim, Yuko Tada, Tsun Hei Sin, Chun Ka Wong, Kwong Yue Eric Chan, Chor Cheung Frankie Tam, Mitchel Benovoy, Andrew E Arai, Victor Goh, Martin A Janich, Amit R Patel, Ming-Yen Ng","doi":"10.1016/j.jocmr.2024.101085","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Quantitative stress cardiac magnetic resonance (CMR) can be performed using the dual-sequence (DS) technique or dual-bolus (DB) method. It is unknown if DS and DB produce similar results for myocardial blood flow (MBF) and myocardial perfusion reserve (MPR). The study objective is to investigate if there are any differences between DB- and DS-derived MBF and MPR.</p><p><strong>Methods: </strong>Retrospective observational study with 168 patients who underwent stress CMR. DB and DS methods were simultaneously performed on each patient on the same day. Global and segmental stress MBF and rest MBF values were collected.</p><p><strong>Results: </strong>Using Bland-Altman analysis, segmental and global stress MBF values were higher in DB than DS (0.22 ± 0.60 mL/g/min, p < 0.001 and 0.20 ± 0.48 mL/g/min, p = 0.005, respectively) with strong correlation (r = 0.81, p < 0.001 for segmental and r = 0.82, p < 0.001 for global). In rest MBF, segmental and global DB values were higher than by DS (0.15 ± 0.51 mL/g/min, p < 0.001 and 0.14 ± 0.36 mL/g/min, p = 0.011, respectively) with strong correlation (r = 0.81, p < 0.001 and r = 0.77, p < 0.001). Mean difference between MPR by DB and DS was -0.02 ± 0.68 mL/g/min (p = 0.758) for segmental values and -0.01 ± 0.49 mL/g/min (p = 0.773) for global values. MPR values correlated strongly as well in both segmental and global, both (r = 0.74, p < 0.001) and (r = 0.75, p < 0.001), respectively.</p><p><strong>Conclusion: </strong>There is a very good correlation between DB- and DS-derived MBF and MPR values. However, there are significant differences between DB- and DS-derived global stress and rest MBF. While MPR values did not show statistically significant differences between DB and DS methods.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422560/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of dual-bolus versus dual-sequence techniques for determining myocardial blood flow and myocardial perfusion reserve by cardiac magnetic resonance stress perfusion: From the Automated Quantitative analysis of myocardial perfusion cardiac Magnetic Resonance Consortium.\",\"authors\":\"Emily Yin Sing Chong, Haonan Wang, Kwan Ho Gordon Leung, Paul Kim, Yuko Tada, Tsun Hei Sin, Chun Ka Wong, Kwong Yue Eric Chan, Chor Cheung Frankie Tam, Mitchel Benovoy, Andrew E Arai, Victor Goh, Martin A Janich, Amit R Patel, Ming-Yen Ng\",\"doi\":\"10.1016/j.jocmr.2024.101085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Quantitative stress cardiac magnetic resonance (CMR) can be performed using the dual-sequence (DS) technique or dual-bolus (DB) method. It is unknown if DS and DB produce similar results for myocardial blood flow (MBF) and myocardial perfusion reserve (MPR). The study objective is to investigate if there are any differences between DB- and DS-derived MBF and MPR.</p><p><strong>Methods: </strong>Retrospective observational study with 168 patients who underwent stress CMR. DB and DS methods were simultaneously performed on each patient on the same day. Global and segmental stress MBF and rest MBF values were collected.</p><p><strong>Results: </strong>Using Bland-Altman analysis, segmental and global stress MBF values were higher in DB than DS (0.22 ± 0.60 mL/g/min, p < 0.001 and 0.20 ± 0.48 mL/g/min, p = 0.005, respectively) with strong correlation (r = 0.81, p < 0.001 for segmental and r = 0.82, p < 0.001 for global). In rest MBF, segmental and global DB values were higher than by DS (0.15 ± 0.51 mL/g/min, p < 0.001 and 0.14 ± 0.36 mL/g/min, p = 0.011, respectively) with strong correlation (r = 0.81, p < 0.001 and r = 0.77, p < 0.001). Mean difference between MPR by DB and DS was -0.02 ± 0.68 mL/g/min (p = 0.758) for segmental values and -0.01 ± 0.49 mL/g/min (p = 0.773) for global values. MPR values correlated strongly as well in both segmental and global, both (r = 0.74, p < 0.001) and (r = 0.75, p < 0.001), respectively.</p><p><strong>Conclusion: </strong>There is a very good correlation between DB- and DS-derived MBF and MPR values. However, there are significant differences between DB- and DS-derived global stress and rest MBF. While MPR values did not show statistically significant differences between DB and DS methods.</p>\",\"PeriodicalId\":15221,\"journal\":{\"name\":\"Journal of Cardiovascular Magnetic Resonance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422560/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Magnetic Resonance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jocmr.2024.101085\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Magnetic Resonance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jocmr.2024.101085","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Comparison of dual-bolus versus dual-sequence techniques for determining myocardial blood flow and myocardial perfusion reserve by cardiac magnetic resonance stress perfusion: From the Automated Quantitative analysis of myocardial perfusion cardiac Magnetic Resonance Consortium.
Background: Quantitative stress cardiac magnetic resonance (CMR) can be performed using the dual-sequence (DS) technique or dual-bolus (DB) method. It is unknown if DS and DB produce similar results for myocardial blood flow (MBF) and myocardial perfusion reserve (MPR). The study objective is to investigate if there are any differences between DB- and DS-derived MBF and MPR.
Methods: Retrospective observational study with 168 patients who underwent stress CMR. DB and DS methods were simultaneously performed on each patient on the same day. Global and segmental stress MBF and rest MBF values were collected.
Results: Using Bland-Altman analysis, segmental and global stress MBF values were higher in DB than DS (0.22 ± 0.60 mL/g/min, p < 0.001 and 0.20 ± 0.48 mL/g/min, p = 0.005, respectively) with strong correlation (r = 0.81, p < 0.001 for segmental and r = 0.82, p < 0.001 for global). In rest MBF, segmental and global DB values were higher than by DS (0.15 ± 0.51 mL/g/min, p < 0.001 and 0.14 ± 0.36 mL/g/min, p = 0.011, respectively) with strong correlation (r = 0.81, p < 0.001 and r = 0.77, p < 0.001). Mean difference between MPR by DB and DS was -0.02 ± 0.68 mL/g/min (p = 0.758) for segmental values and -0.01 ± 0.49 mL/g/min (p = 0.773) for global values. MPR values correlated strongly as well in both segmental and global, both (r = 0.74, p < 0.001) and (r = 0.75, p < 0.001), respectively.
Conclusion: There is a very good correlation between DB- and DS-derived MBF and MPR values. However, there are significant differences between DB- and DS-derived global stress and rest MBF. While MPR values did not show statistically significant differences between DB and DS methods.
期刊介绍:
Journal of Cardiovascular Magnetic Resonance (JCMR) publishes high-quality articles on all aspects of basic, translational and clinical research on the design, development, manufacture, and evaluation of cardiovascular magnetic resonance (CMR) methods applied to the cardiovascular system. Topical areas include, but are not limited to:
New applications of magnetic resonance to improve the diagnostic strategies, risk stratification, characterization and management of diseases affecting the cardiovascular system.
New methods to enhance or accelerate image acquisition and data analysis.
Results of multicenter, or larger single-center studies that provide insight into the utility of CMR.
Basic biological perceptions derived by CMR methods.