受沃伯格效应和缺氧影响的 MCF-7 乳腺癌细胞中糖酵解酶的基因表达。

IF 1.5 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
Irem Bayar, Gamze Sevri Ekren Asici, Ayşegül Bildik, Funda Kiral
{"title":"受沃伯格效应和缺氧影响的 MCF-7 乳腺癌细胞中糖酵解酶的基因表达。","authors":"Irem Bayar, Gamze Sevri Ekren Asici, Ayşegül Bildik, Funda Kiral","doi":"10.22088/IJMCM.BUMS.13.1.29","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxia can cause significant changes in the glucose metabolism of cancer cells that prefer aerobic glycolysis for energy production instead of the conventional oxidative phosphorylation mechanism. In this study, breast cancer cells (MCF-7) were exposed to glucose (0-5.5-15-55 mM), during specific incubation periods (3, 6, 12, or 24 hours) under normoxic and hypoxic conditions. The expression levels of hypoxia-inducible factor-1α (HIF-1α), glucose transporter-1 (GLUT-1), and glycolytic enzymes at varying glucose concentrations in cells were investigated in the different oxygen environments. It was determined that glycolytic enzymes [Hexokinase 2 (HK2), Pyruvate Kinase M2 (PKM2), Glucose-6-phosphate dehydrogenase (G6PD), Lactate Dehydrogenase A (LDHA), Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH), and Phosphofructokinase M (PFKM)] increased at the transcriptional level, especially in the first hours. This increase indicates that major metabolic reprogramming in response to hypoxia probably occurs over a short period of time. The increase in G6PD gene expression under high glucose and hypoxia conditions suggests that the pentose phosphate pathway (PPP) is used by cancer cells to synthesize necessary precursors for the cell. The results of the study showed that there is a significant interaction between hypoxia and glycolytic metabolism in cancer cells. It is thought that metabolic pathways activated by hypoxia and related genes located in these pathways will contribute to the literature by offering the potential to be target molecules for therapeutic purposes.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"13 1","pages":"29-45"},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329934/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gene Expression of Glycolysis Enzymes in MCF-7 Breast Cancer Cells Exposed to Warburg Effect and Hypoxia.\",\"authors\":\"Irem Bayar, Gamze Sevri Ekren Asici, Ayşegül Bildik, Funda Kiral\",\"doi\":\"10.22088/IJMCM.BUMS.13.1.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypoxia can cause significant changes in the glucose metabolism of cancer cells that prefer aerobic glycolysis for energy production instead of the conventional oxidative phosphorylation mechanism. In this study, breast cancer cells (MCF-7) were exposed to glucose (0-5.5-15-55 mM), during specific incubation periods (3, 6, 12, or 24 hours) under normoxic and hypoxic conditions. The expression levels of hypoxia-inducible factor-1α (HIF-1α), glucose transporter-1 (GLUT-1), and glycolytic enzymes at varying glucose concentrations in cells were investigated in the different oxygen environments. It was determined that glycolytic enzymes [Hexokinase 2 (HK2), Pyruvate Kinase M2 (PKM2), Glucose-6-phosphate dehydrogenase (G6PD), Lactate Dehydrogenase A (LDHA), Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH), and Phosphofructokinase M (PFKM)] increased at the transcriptional level, especially in the first hours. This increase indicates that major metabolic reprogramming in response to hypoxia probably occurs over a short period of time. The increase in G6PD gene expression under high glucose and hypoxia conditions suggests that the pentose phosphate pathway (PPP) is used by cancer cells to synthesize necessary precursors for the cell. The results of the study showed that there is a significant interaction between hypoxia and glycolytic metabolism in cancer cells. It is thought that metabolic pathways activated by hypoxia and related genes located in these pathways will contribute to the literature by offering the potential to be target molecules for therapeutic purposes.</p>\",\"PeriodicalId\":14152,\"journal\":{\"name\":\"International Journal of Molecular and Cellular Medicine\",\"volume\":\"13 1\",\"pages\":\"29-45\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329934/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular and Cellular Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22088/IJMCM.BUMS.13.1.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular and Cellular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22088/IJMCM.BUMS.13.1.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

缺氧会导致癌细胞的葡萄糖代谢发生重大变化,癌细胞更倾向于用有氧糖酵解来产生能量,而不是传统的氧化磷酸化机制。本研究将乳腺癌细胞(MCF-7)暴露于葡萄糖(0-5.5-15-55 mM)中,在正常缺氧和缺氧条件下的特定培养期(3、6、12 或 24 小时)内进行培养。研究了细胞在不同氧环境中不同葡萄糖浓度下缺氧诱导因子-1α(HIF-1α)、葡萄糖转运体-1(GLUT-1)和糖酵解酶的表达水平。结果表明,糖酵解酶[己糖激酶 2(HK2)、丙酮酸激酶 M2(PKM2)、葡萄糖-6-磷酸脱氢酶(G6PD)、乳酸脱氢酶 A(LDHA)、甘油醛-3-磷酸脱氢酶(GAPDH)和磷酸果糖激酶 M(PFKM)]在转录水平上有所增加,尤其是在最初几个小时。这种增加表明,应对缺氧的主要代谢重编程可能是在短时间内发生的。高糖和缺氧条件下 G6PD 基因表达的增加表明,癌细胞利用磷酸戊糖途径(PPP)合成细胞所需的前体物质。研究结果表明,缺氧和糖酵解代谢在癌细胞中存在显著的相互作用。人们认为,缺氧激活的代谢途径以及这些途径中的相关基因有可能成为治疗目的的靶分子,从而为文献做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gene Expression of Glycolysis Enzymes in MCF-7 Breast Cancer Cells Exposed to Warburg Effect and Hypoxia.

Hypoxia can cause significant changes in the glucose metabolism of cancer cells that prefer aerobic glycolysis for energy production instead of the conventional oxidative phosphorylation mechanism. In this study, breast cancer cells (MCF-7) were exposed to glucose (0-5.5-15-55 mM), during specific incubation periods (3, 6, 12, or 24 hours) under normoxic and hypoxic conditions. The expression levels of hypoxia-inducible factor-1α (HIF-1α), glucose transporter-1 (GLUT-1), and glycolytic enzymes at varying glucose concentrations in cells were investigated in the different oxygen environments. It was determined that glycolytic enzymes [Hexokinase 2 (HK2), Pyruvate Kinase M2 (PKM2), Glucose-6-phosphate dehydrogenase (G6PD), Lactate Dehydrogenase A (LDHA), Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH), and Phosphofructokinase M (PFKM)] increased at the transcriptional level, especially in the first hours. This increase indicates that major metabolic reprogramming in response to hypoxia probably occurs over a short period of time. The increase in G6PD gene expression under high glucose and hypoxia conditions suggests that the pentose phosphate pathway (PPP) is used by cancer cells to synthesize necessary precursors for the cell. The results of the study showed that there is a significant interaction between hypoxia and glycolytic metabolism in cancer cells. It is thought that metabolic pathways activated by hypoxia and related genes located in these pathways will contribute to the literature by offering the potential to be target molecules for therapeutic purposes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
0
期刊介绍: The International Journal of Molecular and Cellular Medicine (IJMCM) is a peer-reviewed, quarterly publication of Cellular and Molecular Biology Research Center (CMBRC), Babol University of Medical Sciences, Babol, Iran. The journal covers all cellular & molecular biology and medicine disciplines such as the genetic basis of disease, biomarker discovery in diagnosis and treatment, genomics and proteomics, bioinformatics, computer applications in human biology, stem cells and tissue engineering, medical biotechnology, nanomedicine, cellular processes related to growth, death and survival, clinical biochemistry, molecular & cellular immunology, molecular and cellular aspects of infectious disease and cancer research. IJMCM is a free access journal. All open access articles published in IJMCM are distributed under the terms of the Creative Commons Attribution CC BY. The journal doesn''t have any submission and article processing charges (APCs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信