Ling Chu, Yanqing Su, Xiangzhen Zan, Wanmin Lin, Xiangyu Yao, Peng Xu, Wenbin Liu
{"title":"基于调制的 DNA 存储的可抵赖加密方法。","authors":"Ling Chu, Yanqing Su, Xiangzhen Zan, Wanmin Lin, Xiangyu Yao, Peng Xu, Wenbin Liu","doi":"10.1007/s12539-024-00648-5","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in synthesis and sequencing techniques have made deoxyribonucleic acid (DNA) a promising alternative for next-generation digital storage. As it approaches practical application, ensuring the security of DNA-stored information has become a critical problem. Deniable encryption allows the decryption of different information from the same ciphertext, ensuring that the \"plausible\" fake information can be provided when users are coerced to reveal the real information. In this paper, we propose a deniable encryption method that uniquely leverages DNA noise channels. Specifically, true and fake messages are encrypted by two similar modulation carriers and subsequently obfuscated by inherent errors. Experiment results demonstrate that our method not only can conceal true information among fake ones indistinguishably, but also allow both the coercive adversary and the legitimate receiver to decrypt the intended information accurately. Further security analysis validates the resistance of our method against various typical attacks. Compared with conventional DNA cryptography methods based on complex biological operations, our method offers superior practicality and reliability, positioning it as an ideal solution for data encryption in future large-scale DNA storage applications.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"872-881"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deniable Encryption Method for Modulation-Based DNA Storage.\",\"authors\":\"Ling Chu, Yanqing Su, Xiangzhen Zan, Wanmin Lin, Xiangyu Yao, Peng Xu, Wenbin Liu\",\"doi\":\"10.1007/s12539-024-00648-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent advancements in synthesis and sequencing techniques have made deoxyribonucleic acid (DNA) a promising alternative for next-generation digital storage. As it approaches practical application, ensuring the security of DNA-stored information has become a critical problem. Deniable encryption allows the decryption of different information from the same ciphertext, ensuring that the \\\"plausible\\\" fake information can be provided when users are coerced to reveal the real information. In this paper, we propose a deniable encryption method that uniquely leverages DNA noise channels. Specifically, true and fake messages are encrypted by two similar modulation carriers and subsequently obfuscated by inherent errors. Experiment results demonstrate that our method not only can conceal true information among fake ones indistinguishably, but also allow both the coercive adversary and the legitimate receiver to decrypt the intended information accurately. Further security analysis validates the resistance of our method against various typical attacks. Compared with conventional DNA cryptography methods based on complex biological operations, our method offers superior practicality and reliability, positioning it as an ideal solution for data encryption in future large-scale DNA storage applications.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"872-881\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00648-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00648-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
合成和测序技术的最新进展使脱氧核糖核酸(DNA)成为下一代数字存储的理想选择。随着脱氧核糖核酸越来越接近实际应用,确保其存储信息的安全性已成为一个关键问题。可抵赖加密允许对同一密文中的不同信息进行解密,确保用户在被迫透露真实信息时,可以提供 "似是而非 "的假信息。在本文中,我们提出了一种独特利用 DNA 噪音通道的可抵赖加密方法。具体来说,真假信息通过两个相似的调制载波进行加密,然后通过固有误差进行混淆。实验结果表明,我们的方法不仅能将真实信息无差别地隐藏在虚假信息中,还能让胁迫对手和合法接收者准确解密预期信息。进一步的安全性分析验证了我们的方法可以抵御各种典型攻击。与基于复杂生物操作的传统 DNA 密码学方法相比,我们的方法具有更高的实用性和可靠性,是未来大规模 DNA 存储应用中数据加密的理想解决方案。
A Deniable Encryption Method for Modulation-Based DNA Storage.
Recent advancements in synthesis and sequencing techniques have made deoxyribonucleic acid (DNA) a promising alternative for next-generation digital storage. As it approaches practical application, ensuring the security of DNA-stored information has become a critical problem. Deniable encryption allows the decryption of different information from the same ciphertext, ensuring that the "plausible" fake information can be provided when users are coerced to reveal the real information. In this paper, we propose a deniable encryption method that uniquely leverages DNA noise channels. Specifically, true and fake messages are encrypted by two similar modulation carriers and subsequently obfuscated by inherent errors. Experiment results demonstrate that our method not only can conceal true information among fake ones indistinguishably, but also allow both the coercive adversary and the legitimate receiver to decrypt the intended information accurately. Further security analysis validates the resistance of our method against various typical attacks. Compared with conventional DNA cryptography methods based on complex biological operations, our method offers superior practicality and reliability, positioning it as an ideal solution for data encryption in future large-scale DNA storage applications.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.