Tao Wu, Mengyu Du, Lin Zeng, Haiyang Wang, Xinfang Li
{"title":"UBD 增加是胶质瘤的潜在诊断和预后生物标记物","authors":"Tao Wu, Mengyu Du, Lin Zeng, Haiyang Wang, Xinfang Li","doi":"10.1002/tox.24398","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Various studies have demonstrated that ubiquitin D (UBD) is overexpressed in different cancer types and may serve as a potential prognostic factor. However, additional research is necessary to establish the prognostic significance and possible role of UBD in glioma. Transcriptomic expression data from The Cancer Genome Atlas database (TCGA) and Chinese Glioma Genome Atlas (CGGA) were analyzed to identify UBD expression differences in tumor and normal tissues. The relative levels of UBD in glioma and normal tissues were determined using qRT-PCR and WB. Logistic regression analysis was performed to investigate the association between UBD expression and clinicopathological characteristics of glioma patients. To evaluate the diagnostic and prognostic predictive values of UBD, we used Kaplan–Meier survival curves, Cox regression analysis, diagnostic receiver operating characteristic (ROC) curves, and nomogram model. We also conducted wound healing assays, transwell assays, EdU assays, and colony formation assays to verify the UBD function. Gene ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, as well as gene set enrichment analysis (GSEA), were employed to determine the functions of UBD. Finally, we performed the western blot assays to assess changes in EMT markers as well as p-PI3K, p-AKT, and p-mTOR expressions. Our study revealed a remarkable increase of UBD expression in glioma samples. Cox regression analysis demonstrated that high expression of UBD mRNA was an independent prognostic factor for overall survival (OS) in TCGA. ROC curve analysis showed that UBD expression levels could differentiate glioma from adjacent normal tissues accurately. Additionally, knockdown of UBD reduced the migration, invasion, and proliferation ability of glioma cells while UBD overexpression had the opposite effect. GSEA showed that the expression of UBD involved with various pathways including epithelial–mesenchymal transition (EMT), PI3K-AKT-mTOR signaling, P53 pathway, angiogenesis, inflammatory response, KRAS signaling, hypoxia, as well as TGF-β signaling. Furthermore, our findings suggest that UBD accelerates the activation of EMT and PI3K/AKT/mTOR pathway.</p>\n </div>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":"39 12","pages":"5250-5263"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increased UBD Is a Potential Diagnostic and Prognostic Biomarker in Glioma\",\"authors\":\"Tao Wu, Mengyu Du, Lin Zeng, Haiyang Wang, Xinfang Li\",\"doi\":\"10.1002/tox.24398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Various studies have demonstrated that ubiquitin D (UBD) is overexpressed in different cancer types and may serve as a potential prognostic factor. However, additional research is necessary to establish the prognostic significance and possible role of UBD in glioma. Transcriptomic expression data from The Cancer Genome Atlas database (TCGA) and Chinese Glioma Genome Atlas (CGGA) were analyzed to identify UBD expression differences in tumor and normal tissues. The relative levels of UBD in glioma and normal tissues were determined using qRT-PCR and WB. Logistic regression analysis was performed to investigate the association between UBD expression and clinicopathological characteristics of glioma patients. To evaluate the diagnostic and prognostic predictive values of UBD, we used Kaplan–Meier survival curves, Cox regression analysis, diagnostic receiver operating characteristic (ROC) curves, and nomogram model. We also conducted wound healing assays, transwell assays, EdU assays, and colony formation assays to verify the UBD function. Gene ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, as well as gene set enrichment analysis (GSEA), were employed to determine the functions of UBD. Finally, we performed the western blot assays to assess changes in EMT markers as well as p-PI3K, p-AKT, and p-mTOR expressions. Our study revealed a remarkable increase of UBD expression in glioma samples. Cox regression analysis demonstrated that high expression of UBD mRNA was an independent prognostic factor for overall survival (OS) in TCGA. ROC curve analysis showed that UBD expression levels could differentiate glioma from adjacent normal tissues accurately. Additionally, knockdown of UBD reduced the migration, invasion, and proliferation ability of glioma cells while UBD overexpression had the opposite effect. GSEA showed that the expression of UBD involved with various pathways including epithelial–mesenchymal transition (EMT), PI3K-AKT-mTOR signaling, P53 pathway, angiogenesis, inflammatory response, KRAS signaling, hypoxia, as well as TGF-β signaling. Furthermore, our findings suggest that UBD accelerates the activation of EMT and PI3K/AKT/mTOR pathway.</p>\\n </div>\",\"PeriodicalId\":11756,\"journal\":{\"name\":\"Environmental Toxicology\",\"volume\":\"39 12\",\"pages\":\"5250-5263\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/tox.24398\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tox.24398","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Increased UBD Is a Potential Diagnostic and Prognostic Biomarker in Glioma
Various studies have demonstrated that ubiquitin D (UBD) is overexpressed in different cancer types and may serve as a potential prognostic factor. However, additional research is necessary to establish the prognostic significance and possible role of UBD in glioma. Transcriptomic expression data from The Cancer Genome Atlas database (TCGA) and Chinese Glioma Genome Atlas (CGGA) were analyzed to identify UBD expression differences in tumor and normal tissues. The relative levels of UBD in glioma and normal tissues were determined using qRT-PCR and WB. Logistic regression analysis was performed to investigate the association between UBD expression and clinicopathological characteristics of glioma patients. To evaluate the diagnostic and prognostic predictive values of UBD, we used Kaplan–Meier survival curves, Cox regression analysis, diagnostic receiver operating characteristic (ROC) curves, and nomogram model. We also conducted wound healing assays, transwell assays, EdU assays, and colony formation assays to verify the UBD function. Gene ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, as well as gene set enrichment analysis (GSEA), were employed to determine the functions of UBD. Finally, we performed the western blot assays to assess changes in EMT markers as well as p-PI3K, p-AKT, and p-mTOR expressions. Our study revealed a remarkable increase of UBD expression in glioma samples. Cox regression analysis demonstrated that high expression of UBD mRNA was an independent prognostic factor for overall survival (OS) in TCGA. ROC curve analysis showed that UBD expression levels could differentiate glioma from adjacent normal tissues accurately. Additionally, knockdown of UBD reduced the migration, invasion, and proliferation ability of glioma cells while UBD overexpression had the opposite effect. GSEA showed that the expression of UBD involved with various pathways including epithelial–mesenchymal transition (EMT), PI3K-AKT-mTOR signaling, P53 pathway, angiogenesis, inflammatory response, KRAS signaling, hypoxia, as well as TGF-β signaling. Furthermore, our findings suggest that UBD accelerates the activation of EMT and PI3K/AKT/mTOR pathway.
期刊介绍:
The journal publishes in the areas of toxicity and toxicology of environmental pollutants in air, dust, sediment, soil and water, and natural toxins in the environment.Of particular interest are:
Toxic or biologically disruptive impacts of anthropogenic chemicals such as pharmaceuticals, industrial organics, agricultural chemicals, and by-products such as chlorinated compounds from water disinfection and waste incineration;
Natural toxins and their impacts;
Biotransformation and metabolism of toxigenic compounds, food chains for toxin accumulation or biodegradation;
Assays of toxicity, endocrine disruption, mutagenicity, carcinogenicity, ecosystem impact and health hazard;
Environmental and public health risk assessment, environmental guidelines, environmental policy for toxicants.