沉默 POLE2 可通过 wnt 信号轴抑制结直肠癌细胞的进展。

IF 4.4 4区 医学 Q2 ONCOLOGY
Cancer Biology & Therapy Pub Date : 2024-12-31 Epub Date: 2024-08-18 DOI:10.1080/15384047.2024.2392339
Weihua Jian, Lei Zhang
{"title":"沉默 POLE2 可通过 wnt 信号轴抑制结直肠癌细胞的进展。","authors":"Weihua Jian, Lei Zhang","doi":"10.1080/15384047.2024.2392339","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) is one of the most common malignant carcinoma worldwide. DNA polymerase epsilon 2, accessory subunit (POLE2) participates in DNA replication, repair, and cell cycle control, but its association with CRC development remains unclear. In the present study, the differentially expressed genes (DEGs) in CRC were screened from bioinformatics analysis based on GEO database. RT-qPCR was used to assess mRNA expression. CCK-8 and colony formation assays were applied for the evaluation of cell proliferation. Wound healing and transwell assays were used to detect cell migration and invasion. Protein levels were determined by Western blotting assay. We found that POLE2 was highly expressed in CRC tissues and cell lines. Inhibition of POLE2 suppressed the proliferation, migration and invasion of CRC cells. Mechanistically, Wnt/β-catenin signaling pathway was inactivated by inhibition of POLE2. Activation of Wnt/β-catenin pathway can reverse the function of POLE2 knockdown on CRC cells. <i>In vivo</i> studies demonstrated that POLE2 silencing could notably inhibit the growth of tumors, which was consistent with the results <i>in vitro</i>. In conclusion, we found POLE2 as a novel oncogene in CRC, providing a potential therapeutic or diagnostic target in CRC.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2392339"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340749/pdf/","citationCount":"0","resultStr":"{\"title\":\"POLE2 silencing inhibits the progression of colorectal carcinoma cells via wnt signaling axis.\",\"authors\":\"Weihua Jian, Lei Zhang\",\"doi\":\"10.1080/15384047.2024.2392339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colorectal cancer (CRC) is one of the most common malignant carcinoma worldwide. DNA polymerase epsilon 2, accessory subunit (POLE2) participates in DNA replication, repair, and cell cycle control, but its association with CRC development remains unclear. In the present study, the differentially expressed genes (DEGs) in CRC were screened from bioinformatics analysis based on GEO database. RT-qPCR was used to assess mRNA expression. CCK-8 and colony formation assays were applied for the evaluation of cell proliferation. Wound healing and transwell assays were used to detect cell migration and invasion. Protein levels were determined by Western blotting assay. We found that POLE2 was highly expressed in CRC tissues and cell lines. Inhibition of POLE2 suppressed the proliferation, migration and invasion of CRC cells. Mechanistically, Wnt/β-catenin signaling pathway was inactivated by inhibition of POLE2. Activation of Wnt/β-catenin pathway can reverse the function of POLE2 knockdown on CRC cells. <i>In vivo</i> studies demonstrated that POLE2 silencing could notably inhibit the growth of tumors, which was consistent with the results <i>in vitro</i>. In conclusion, we found POLE2 as a novel oncogene in CRC, providing a potential therapeutic or diagnostic target in CRC.</p>\",\"PeriodicalId\":9536,\"journal\":{\"name\":\"Cancer Biology & Therapy\",\"volume\":\"25 1\",\"pages\":\"2392339\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340749/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Biology & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15384047.2024.2392339\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2024.2392339","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

结直肠癌(CRC)是全球最常见的恶性肿瘤之一。DNA 聚合酶ε2附属亚基(POLE2)参与DNA复制、修复和细胞周期控制,但它与CRC发病的关系仍不清楚。本研究以 GEO 数据库为基础,通过生物信息学分析筛选出 CRC 中的差异表达基因(DEGs)。采用 RT-qPCR 评估 mRNA 表达。CCK-8和集落形成试验用于评估细胞增殖。伤口愈合和透孔试验用于检测细胞迁移和侵袭。蛋白水平则通过 Western 印迹检测来确定。我们发现 POLE2 在 CRC 组织和细胞系中高表达。抑制 POLE2 可抑制 CRC 细胞的增殖、迁移和侵袭。从机制上讲,POLE2抑制了Wnt/β-catenin信号通路的失活。激活 Wnt/β-catenin 通路可以逆转 POLE2 敲除对 CRC 细胞的作用。体内研究表明,POLE2沉默能显著抑制肿瘤的生长,这与体外研究结果一致。总之,我们发现 POLE2 是 CRC 中的一种新型癌基因,为 CRC 提供了一个潜在的治疗或诊断靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
POLE2 silencing inhibits the progression of colorectal carcinoma cells via wnt signaling axis.

Colorectal cancer (CRC) is one of the most common malignant carcinoma worldwide. DNA polymerase epsilon 2, accessory subunit (POLE2) participates in DNA replication, repair, and cell cycle control, but its association with CRC development remains unclear. In the present study, the differentially expressed genes (DEGs) in CRC were screened from bioinformatics analysis based on GEO database. RT-qPCR was used to assess mRNA expression. CCK-8 and colony formation assays were applied for the evaluation of cell proliferation. Wound healing and transwell assays were used to detect cell migration and invasion. Protein levels were determined by Western blotting assay. We found that POLE2 was highly expressed in CRC tissues and cell lines. Inhibition of POLE2 suppressed the proliferation, migration and invasion of CRC cells. Mechanistically, Wnt/β-catenin signaling pathway was inactivated by inhibition of POLE2. Activation of Wnt/β-catenin pathway can reverse the function of POLE2 knockdown on CRC cells. In vivo studies demonstrated that POLE2 silencing could notably inhibit the growth of tumors, which was consistent with the results in vitro. In conclusion, we found POLE2 as a novel oncogene in CRC, providing a potential therapeutic or diagnostic target in CRC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer Biology & Therapy
Cancer Biology & Therapy 医学-肿瘤学
CiteScore
7.00
自引率
0.00%
发文量
60
审稿时长
2.3 months
期刊介绍: Cancer, the second leading cause of death, is a heterogenous group of over 100 diseases. Cancer is characterized by disordered and deregulated cellular and stromal proliferation accompanied by reduced cell death with the ability to survive under stresses of nutrient and growth factor deprivation, hypoxia, and loss of cell-to-cell contacts. At the molecular level, cancer is a genetic disease that develops due to the accumulation of mutations over time in somatic cells. The phenotype includes genomic instability and chromosomal aneuploidy that allows for acceleration of genetic change. Malignant transformation and tumor progression of any cell requires immortalization, loss of checkpoint control, deregulation of growth, and survival. A tremendous amount has been learned about the numerous cellular and molecular genetic changes and the host-tumor interactions that accompany tumor development and progression. It is the goal of the field of Molecular Oncology to use this knowledge to understand cancer pathogenesis and drug action, as well as to develop more effective diagnostic and therapeutic strategies for cancer. This includes preventative strategies as well as approaches to treat metastases. With the availability of the human genome sequence and genomic and proteomic approaches, a wealth of tools and resources are generating even more information. The challenge will be to make biological sense out of the information, to develop appropriate models and hypotheses and to translate information for the clinicians and the benefit of their patients. Cancer Biology & Therapy aims to publish original research on the molecular basis of cancer, including articles with translational relevance to diagnosis or therapy. We will include timely reviews covering the broad scope of the journal. The journal will also publish op-ed pieces and meeting reports of interest. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The journal and the outstanding Editorial Board will strive to maintain the highest standards for excellence in all activities to generate a valuable resource.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信