注意网络在人脑频率依赖性模块组织中的整合作用

IF 2.7 3区 医学 Q1 ANATOMY & MORPHOLOGY
Hüden Neşe, Emre Harı, Ulaş Ay, Tamer Demiralp, Ahmet Ademoğlu
{"title":"注意网络在人脑频率依赖性模块组织中的整合作用","authors":"Hüden Neşe, Emre Harı, Ulaş Ay, Tamer Demiralp, Ahmet Ademoğlu","doi":"10.1007/s00429-024-02847-8","DOIUrl":null,"url":null,"abstract":"<p><p>Despite converging evidence of hierarchical organization in the cerebral cortex, with sensory-motor and association regions at opposite ends, the mechanism of such hierarchical interactions remains elusive. This organization was primarily investigated regarding the spatiotemporal dynamics of intrinsic connectivity networks (ICNs). However, more effort is needed to investigate network dynamics in the frequency domain. We aimed to examine the integrative role of brain regions in the frequency domain with graph metrics. Phase-based connectivity estimation was performed in three frequency bands (0.011-0.038, 0.043-0.071, and 0.076-0.103 Hz) in the BOLD signal during rest. We applied modularity analysis to connectivity matrices and investigated those areas, which we called integrative regions, that showed frequency-domain flexibility. Integrative regions, mostly belonging to attention networks, were densely connected to higher-order cognitive ICNs in lower frequency bands but to sensory-motor ICNs in higher frequency bands. We compared the normalized participation coefficient (P<sup>norm</sup>) values of integrative and core regions with respect to their relation to higher-order cognition using a permutation-based t-test for multiple linear regression. Regression parameters of integrative regions in relation to three cognitive scores in executive functions, and working memory were significantly larger than those of core regions (P<sub>fdr</sub> < 0.05) for salience ventral attention network. Parameters of integrative regions in relation to intelligence scores were significantly larger than those with core regions (P<sub>fdr</sub> < 0.05) in dorsal attention network. Larger parameters of neuropsychological test scores in relation to these flexible parcels further indicate their essential role at an intermediate level in behavior. Results emphasize the importance of frequency-band analysis of brain networks.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrative role of attention networks in frequency-dependent modular organization of human brain.\",\"authors\":\"Hüden Neşe, Emre Harı, Ulaş Ay, Tamer Demiralp, Ahmet Ademoğlu\",\"doi\":\"10.1007/s00429-024-02847-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite converging evidence of hierarchical organization in the cerebral cortex, with sensory-motor and association regions at opposite ends, the mechanism of such hierarchical interactions remains elusive. This organization was primarily investigated regarding the spatiotemporal dynamics of intrinsic connectivity networks (ICNs). However, more effort is needed to investigate network dynamics in the frequency domain. We aimed to examine the integrative role of brain regions in the frequency domain with graph metrics. Phase-based connectivity estimation was performed in three frequency bands (0.011-0.038, 0.043-0.071, and 0.076-0.103 Hz) in the BOLD signal during rest. We applied modularity analysis to connectivity matrices and investigated those areas, which we called integrative regions, that showed frequency-domain flexibility. Integrative regions, mostly belonging to attention networks, were densely connected to higher-order cognitive ICNs in lower frequency bands but to sensory-motor ICNs in higher frequency bands. We compared the normalized participation coefficient (P<sup>norm</sup>) values of integrative and core regions with respect to their relation to higher-order cognition using a permutation-based t-test for multiple linear regression. Regression parameters of integrative regions in relation to three cognitive scores in executive functions, and working memory were significantly larger than those of core regions (P<sub>fdr</sub> < 0.05) for salience ventral attention network. Parameters of integrative regions in relation to intelligence scores were significantly larger than those with core regions (P<sub>fdr</sub> < 0.05) in dorsal attention network. Larger parameters of neuropsychological test scores in relation to these flexible parcels further indicate their essential role at an intermediate level in behavior. Results emphasize the importance of frequency-band analysis of brain networks.</p>\",\"PeriodicalId\":9145,\"journal\":{\"name\":\"Brain Structure & Function\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Structure & Function\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00429-024-02847-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure & Function","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00429-024-02847-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管有越来越多的证据表明大脑皮层存在分层组织,感觉-运动区和联想区处于两端,但这种分层互动的机制仍然难以捉摸。对这种组织结构的研究主要涉及内在连接网络(ICN)的时空动态。然而,还需要更多的努力来研究频域中的网络动力学。我们的目的是利用图指标研究大脑区域在频域中的整合作用。我们对静息时 BOLD 信号的三个频段(0.011-0.038、0.043-0.071 和 0.076-0.103 Hz)进行了基于相位的连接性估计。我们对连接矩阵进行了模块化分析,并研究了那些表现出频域灵活性的区域,我们称之为整合区域。整合区域大多属于注意力网络,在低频段与高阶认知 ICN 紧密连接,但在高频段则与感觉运动 ICN 紧密连接。我们使用基于置换的多元线性回归 t 检验法,比较了整合区域和核心区域的归一化参与系数(Pnorm)值与高阶认知的关系。整合区域与执行功能和工作记忆三个认知分值的回归参数明显大于核心区域(Pfdr fdr
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integrative role of attention networks in frequency-dependent modular organization of human brain.

Integrative role of attention networks in frequency-dependent modular organization of human brain.

Despite converging evidence of hierarchical organization in the cerebral cortex, with sensory-motor and association regions at opposite ends, the mechanism of such hierarchical interactions remains elusive. This organization was primarily investigated regarding the spatiotemporal dynamics of intrinsic connectivity networks (ICNs). However, more effort is needed to investigate network dynamics in the frequency domain. We aimed to examine the integrative role of brain regions in the frequency domain with graph metrics. Phase-based connectivity estimation was performed in three frequency bands (0.011-0.038, 0.043-0.071, and 0.076-0.103 Hz) in the BOLD signal during rest. We applied modularity analysis to connectivity matrices and investigated those areas, which we called integrative regions, that showed frequency-domain flexibility. Integrative regions, mostly belonging to attention networks, were densely connected to higher-order cognitive ICNs in lower frequency bands but to sensory-motor ICNs in higher frequency bands. We compared the normalized participation coefficient (Pnorm) values of integrative and core regions with respect to their relation to higher-order cognition using a permutation-based t-test for multiple linear regression. Regression parameters of integrative regions in relation to three cognitive scores in executive functions, and working memory were significantly larger than those of core regions (Pfdr < 0.05) for salience ventral attention network. Parameters of integrative regions in relation to intelligence scores were significantly larger than those with core regions (Pfdr < 0.05) in dorsal attention network. Larger parameters of neuropsychological test scores in relation to these flexible parcels further indicate their essential role at an intermediate level in behavior. Results emphasize the importance of frequency-band analysis of brain networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Structure & Function
Brain Structure & Function 医学-解剖学与形态学
CiteScore
6.00
自引率
6.50%
发文量
168
审稿时长
8 months
期刊介绍: Brain Structure & Function publishes research that provides insight into brain structure−function relationships. Studies published here integrate data spanning from molecular, cellular, developmental, and systems architecture to the neuroanatomy of behavior and cognitive functions. Manuscripts with focus on the spinal cord or the peripheral nervous system are not accepted for publication. Manuscripts with focus on diseases, animal models of diseases, or disease-related mechanisms are only considered for publication, if the findings provide novel insight into the organization and mechanisms of normal brain structure and function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信