{"title":"通过整合作物物候模型和机器学习预测中国各地的水稻物候。","authors":"Jinhan Zhang, Xiaomao Lin, Chongya Jiang, Xuntao Hu, Bing Liu, Leilei Liu, Liujun Xiao, Yan Zhu, Weixing Cao, Liang Tang","doi":"10.1016/j.scitotenv.2024.175585","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the integration of crop phenology models and machine learning approaches for predicting rice phenology across China, to gain a deeper understanding of rice phenology prediction. Multiple approaches were used to predict heading and maturity dates at 337 locations across the main rice growing regions of China from 1981 to 2020, including crop phenology model, machine learning and hybrid model that integrate both approaches. Furthermore, an interpretable machine learning (IML) using SHapley Additive exPlanation (SHAP) was employed to elucidate influence of climatic and varietal factors on uncertainty in crop phenology model predictions. Overall, the hybrid model demonstrated a high accuracy in predicting rice phenology, followed by machine learning and crop phenology models. The best hybrid model, based on a serial structure and the eXtreme Gradient Boosting (XGBoost) algorithm, achieved a root mean square error (RMSE) of 4.65 and 5.72 days and coefficient of determination (R<sup>2</sup>) values of 0.93 and 0.9 for heading and maturity predictions, respectively. SHAP analysis revealed temperature to be the most influential climate variable affecting phenology predictions, particularly under extreme temperature conditions, while rainfall and solar radiation were found to be less influential. The analysis also highlighted the variable importance of climate across different phenological stages, rice cultivation patterns, and geographic regions, underscoring the notable regionality. The study proposed that a hybrid model using an IML approach would not only improve the accuracy of prediction but also offer a robust framework for leveraging data-driven in crop modeling, providing a valuable tool for refining and advancing the modeling process in rice.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"175585"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting rice phenology across China by integrating crop phenology model and machine learning.\",\"authors\":\"Jinhan Zhang, Xiaomao Lin, Chongya Jiang, Xuntao Hu, Bing Liu, Leilei Liu, Liujun Xiao, Yan Zhu, Weixing Cao, Liang Tang\",\"doi\":\"10.1016/j.scitotenv.2024.175585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study explores the integration of crop phenology models and machine learning approaches for predicting rice phenology across China, to gain a deeper understanding of rice phenology prediction. Multiple approaches were used to predict heading and maturity dates at 337 locations across the main rice growing regions of China from 1981 to 2020, including crop phenology model, machine learning and hybrid model that integrate both approaches. Furthermore, an interpretable machine learning (IML) using SHapley Additive exPlanation (SHAP) was employed to elucidate influence of climatic and varietal factors on uncertainty in crop phenology model predictions. Overall, the hybrid model demonstrated a high accuracy in predicting rice phenology, followed by machine learning and crop phenology models. The best hybrid model, based on a serial structure and the eXtreme Gradient Boosting (XGBoost) algorithm, achieved a root mean square error (RMSE) of 4.65 and 5.72 days and coefficient of determination (R<sup>2</sup>) values of 0.93 and 0.9 for heading and maturity predictions, respectively. SHAP analysis revealed temperature to be the most influential climate variable affecting phenology predictions, particularly under extreme temperature conditions, while rainfall and solar radiation were found to be less influential. The analysis also highlighted the variable importance of climate across different phenological stages, rice cultivation patterns, and geographic regions, underscoring the notable regionality. The study proposed that a hybrid model using an IML approach would not only improve the accuracy of prediction but also offer a robust framework for leveraging data-driven in crop modeling, providing a valuable tool for refining and advancing the modeling process in rice.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\" \",\"pages\":\"175585\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.175585\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.175585","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Predicting rice phenology across China by integrating crop phenology model and machine learning.
This study explores the integration of crop phenology models and machine learning approaches for predicting rice phenology across China, to gain a deeper understanding of rice phenology prediction. Multiple approaches were used to predict heading and maturity dates at 337 locations across the main rice growing regions of China from 1981 to 2020, including crop phenology model, machine learning and hybrid model that integrate both approaches. Furthermore, an interpretable machine learning (IML) using SHapley Additive exPlanation (SHAP) was employed to elucidate influence of climatic and varietal factors on uncertainty in crop phenology model predictions. Overall, the hybrid model demonstrated a high accuracy in predicting rice phenology, followed by machine learning and crop phenology models. The best hybrid model, based on a serial structure and the eXtreme Gradient Boosting (XGBoost) algorithm, achieved a root mean square error (RMSE) of 4.65 and 5.72 days and coefficient of determination (R2) values of 0.93 and 0.9 for heading and maturity predictions, respectively. SHAP analysis revealed temperature to be the most influential climate variable affecting phenology predictions, particularly under extreme temperature conditions, while rainfall and solar radiation were found to be less influential. The analysis also highlighted the variable importance of climate across different phenological stages, rice cultivation patterns, and geographic regions, underscoring the notable regionality. The study proposed that a hybrid model using an IML approach would not only improve the accuracy of prediction but also offer a robust framework for leveraging data-driven in crop modeling, providing a valuable tool for refining and advancing the modeling process in rice.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.