{"title":"用于迁移试验的微芯片构建:研究疫苗病毒感染过程中物理限制对细胞形态和运动的影响。","authors":"Cheng Wang, Yueyue Huangfu, Ji Wang, Xiaofeng Lu, Dong Liu, Zhi-Ling Zhang","doi":"10.1007/s00216-024-05485-5","DOIUrl":null,"url":null,"abstract":"<p><p>Vaccinia virus (VACV)-induced cell migration is thought to be closely related to the rapid transmission of viral infection in the body. The limited studies are mainly based on scratch assay using traditional cell culture techniques, which inevitably ignores the influences of extracellular microenvironment. Physical confinement, inherently presenting in vivo, has proven to be a critical extern cue in modulating migration behaviors of multiple cells, while its impacts on VACV-induced cell motility remain unclear. Herein, we developed a migration assay microchip featuring confined microchannel array to investigate the effect of physical confinement on infected cell morphology and motility during VACV infection. Results showed that different from the random cell migration observed in traditional scratch assay on planar substrate, VACV-infected cells exhibited accelerated directionally persistent migration under confinement microenvironment. Moreover, single-directed elongated dominant lamella appeared to contrast distinctly with multiple protrusions stretched in random directions under unconfined condition. Additionally, the Golgi complex tended to relocate behind the nucleus confined within the microchannel axis compared to the classical reorientation pattern. These differences in characteristic subcellular architecture and organelle reorientation of migrating cells revealed cell biological mechanisms underlying altered migration behavior. Collectively, our study demonstrates that physical confinement acting as a guidance cue has profound impacts on VACV-induced migration behaviors, which provides new insight into cell migration behavior and viral rapid spread during VACV infection.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microchip construction for migration assays: investigating the impact of physical confinement on cell morphology and motility during vaccinia virus infection.\",\"authors\":\"Cheng Wang, Yueyue Huangfu, Ji Wang, Xiaofeng Lu, Dong Liu, Zhi-Ling Zhang\",\"doi\":\"10.1007/s00216-024-05485-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vaccinia virus (VACV)-induced cell migration is thought to be closely related to the rapid transmission of viral infection in the body. The limited studies are mainly based on scratch assay using traditional cell culture techniques, which inevitably ignores the influences of extracellular microenvironment. Physical confinement, inherently presenting in vivo, has proven to be a critical extern cue in modulating migration behaviors of multiple cells, while its impacts on VACV-induced cell motility remain unclear. Herein, we developed a migration assay microchip featuring confined microchannel array to investigate the effect of physical confinement on infected cell morphology and motility during VACV infection. Results showed that different from the random cell migration observed in traditional scratch assay on planar substrate, VACV-infected cells exhibited accelerated directionally persistent migration under confinement microenvironment. Moreover, single-directed elongated dominant lamella appeared to contrast distinctly with multiple protrusions stretched in random directions under unconfined condition. Additionally, the Golgi complex tended to relocate behind the nucleus confined within the microchannel axis compared to the classical reorientation pattern. These differences in characteristic subcellular architecture and organelle reorientation of migrating cells revealed cell biological mechanisms underlying altered migration behavior. Collectively, our study demonstrates that physical confinement acting as a guidance cue has profound impacts on VACV-induced migration behaviors, which provides new insight into cell migration behavior and viral rapid spread during VACV infection.</p>\",\"PeriodicalId\":462,\"journal\":{\"name\":\"Analytical and Bioanalytical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical and Bioanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00216-024-05485-5\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-024-05485-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Microchip construction for migration assays: investigating the impact of physical confinement on cell morphology and motility during vaccinia virus infection.
Vaccinia virus (VACV)-induced cell migration is thought to be closely related to the rapid transmission of viral infection in the body. The limited studies are mainly based on scratch assay using traditional cell culture techniques, which inevitably ignores the influences of extracellular microenvironment. Physical confinement, inherently presenting in vivo, has proven to be a critical extern cue in modulating migration behaviors of multiple cells, while its impacts on VACV-induced cell motility remain unclear. Herein, we developed a migration assay microchip featuring confined microchannel array to investigate the effect of physical confinement on infected cell morphology and motility during VACV infection. Results showed that different from the random cell migration observed in traditional scratch assay on planar substrate, VACV-infected cells exhibited accelerated directionally persistent migration under confinement microenvironment. Moreover, single-directed elongated dominant lamella appeared to contrast distinctly with multiple protrusions stretched in random directions under unconfined condition. Additionally, the Golgi complex tended to relocate behind the nucleus confined within the microchannel axis compared to the classical reorientation pattern. These differences in characteristic subcellular architecture and organelle reorientation of migrating cells revealed cell biological mechanisms underlying altered migration behavior. Collectively, our study demonstrates that physical confinement acting as a guidance cue has profound impacts on VACV-induced migration behaviors, which provides new insight into cell migration behavior and viral rapid spread during VACV infection.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.