Xuchun Qiu , Yibing Zhang , Jiarui Gao , Yiming Cui , Kejun Dong , Kun Chen , Yanhong Shi
{"title":"硫柳汞暴露通过改变氨基酸稳态诱导斑马鱼早期行为异常","authors":"Xuchun Qiu , Yibing Zhang , Jiarui Gao , Yiming Cui , Kejun Dong , Kun Chen , Yanhong Shi","doi":"10.1016/j.jhazmat.2024.135548","DOIUrl":null,"url":null,"abstract":"<div><p>Thimerosal (THI) has become a significant source of organic mercury pollutants in aquatic ecosystems, but there is limited information regarding its adverse effects on fish. In this study, zebrafish embryos were exposed to THI at 0 (control), 5.0, and 50 ng/L from 0–5 days post fertilization (dpf), and variations in their survival, development, behavior, free amino acid contents, and the biochemical responses involved in monoaminergic systems were examined. Although THI exposure did not significantly affect the survival, heart rate, or hatching time of zebrafish embryos, it substantially increased swimming velocity (136–154 % of the control) and reduced exploratory behavior (141–142 % of the control) in zebrafish larvae at 5 dpf. Exposure also significantly altered the amino acid contents (51–209 % of the control) and monoamine levels (70–154 % of the control) in zebrafish larvae, some of which displayed significant correlations with behavioral traits. THI significantly elevated dopamine receptor gene expression and monoamine oxidase activity in zebrafish larvae. Adding extra phenylalanine or tryptophan to the E3 medium facilitates the recovery of zebrafish larvae from the abnormal behaviors induced by THI. These findings reveal for the first time that THI exposure at the level of ng/L is sufficient to induce neurobehavioral toxic effects in the early life stages of zebrafish, and disrupting amino acid homeostasis is a critical underlying mechanism. This study provides valuable insights into the toxicity of THI to fish and highlights the importance of assessing its potential risks to aquatic ecosystems.</p></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"478 ","pages":"Article 135548"},"PeriodicalIF":11.3000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exposure to thimerosal induces behavioral abnormality in the early life stages of zebrafish via altering amino acid homeostasis\",\"authors\":\"Xuchun Qiu , Yibing Zhang , Jiarui Gao , Yiming Cui , Kejun Dong , Kun Chen , Yanhong Shi\",\"doi\":\"10.1016/j.jhazmat.2024.135548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thimerosal (THI) has become a significant source of organic mercury pollutants in aquatic ecosystems, but there is limited information regarding its adverse effects on fish. In this study, zebrafish embryos were exposed to THI at 0 (control), 5.0, and 50 ng/L from 0–5 days post fertilization (dpf), and variations in their survival, development, behavior, free amino acid contents, and the biochemical responses involved in monoaminergic systems were examined. Although THI exposure did not significantly affect the survival, heart rate, or hatching time of zebrafish embryos, it substantially increased swimming velocity (136–154 % of the control) and reduced exploratory behavior (141–142 % of the control) in zebrafish larvae at 5 dpf. Exposure also significantly altered the amino acid contents (51–209 % of the control) and monoamine levels (70–154 % of the control) in zebrafish larvae, some of which displayed significant correlations with behavioral traits. THI significantly elevated dopamine receptor gene expression and monoamine oxidase activity in zebrafish larvae. Adding extra phenylalanine or tryptophan to the E3 medium facilitates the recovery of zebrafish larvae from the abnormal behaviors induced by THI. These findings reveal for the first time that THI exposure at the level of ng/L is sufficient to induce neurobehavioral toxic effects in the early life stages of zebrafish, and disrupting amino acid homeostasis is a critical underlying mechanism. This study provides valuable insights into the toxicity of THI to fish and highlights the importance of assessing its potential risks to aquatic ecosystems.</p></div>\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"478 \",\"pages\":\"Article 135548\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304389424021277\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389424021277","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Exposure to thimerosal induces behavioral abnormality in the early life stages of zebrafish via altering amino acid homeostasis
Thimerosal (THI) has become a significant source of organic mercury pollutants in aquatic ecosystems, but there is limited information regarding its adverse effects on fish. In this study, zebrafish embryos were exposed to THI at 0 (control), 5.0, and 50 ng/L from 0–5 days post fertilization (dpf), and variations in their survival, development, behavior, free amino acid contents, and the biochemical responses involved in monoaminergic systems were examined. Although THI exposure did not significantly affect the survival, heart rate, or hatching time of zebrafish embryos, it substantially increased swimming velocity (136–154 % of the control) and reduced exploratory behavior (141–142 % of the control) in zebrafish larvae at 5 dpf. Exposure also significantly altered the amino acid contents (51–209 % of the control) and monoamine levels (70–154 % of the control) in zebrafish larvae, some of which displayed significant correlations with behavioral traits. THI significantly elevated dopamine receptor gene expression and monoamine oxidase activity in zebrafish larvae. Adding extra phenylalanine or tryptophan to the E3 medium facilitates the recovery of zebrafish larvae from the abnormal behaviors induced by THI. These findings reveal for the first time that THI exposure at the level of ng/L is sufficient to induce neurobehavioral toxic effects in the early life stages of zebrafish, and disrupting amino acid homeostasis is a critical underlying mechanism. This study provides valuable insights into the toxicity of THI to fish and highlights the importance of assessing its potential risks to aquatic ecosystems.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.