{"title":"利用遥感技术对甲烷源进行分类的可解释 MHSA 双尺度卷积深度架构","authors":"Kamakhya Bansal, Ashish Kumar Tripathi","doi":"10.1016/j.envsoft.2024.106178","DOIUrl":null,"url":null,"abstract":"<div><p>Methane is the second most abundant greenhouse gas after carbon dioxide. Anthropogenic sources are the dominant emitters of methane. The poor spatial resolution of satellite imagery, high interclass similarity, the multi-scalar nature of features, and the dominance of background limit the performance of the previous approaches. Further, the reliance on high-resolution imagery limits the cost-effective global application of the works introduced in the literature. To resolve this, the present work proposes a novel method for methane source classification based on open-source multi-spectral satellite imagery of Sentinel-1 and 2. The work utilizes deep dual-scale convolutions with scaled dot product self-attention calculated across the 15 composite bands of Sentinel-1 and 2 data. The incorporation of non-RGB bands along with the RGB bands further enables the model to learn the spectral differences essential for the classification. The experimental results witness the superior performance of the developed method against other considered state-of-the-art methods.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"181 ","pages":"Article 106178"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An explainable MHSA enabled deep architecture with dual-scale convolutions for methane source classification using remote sensing\",\"authors\":\"Kamakhya Bansal, Ashish Kumar Tripathi\",\"doi\":\"10.1016/j.envsoft.2024.106178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Methane is the second most abundant greenhouse gas after carbon dioxide. Anthropogenic sources are the dominant emitters of methane. The poor spatial resolution of satellite imagery, high interclass similarity, the multi-scalar nature of features, and the dominance of background limit the performance of the previous approaches. Further, the reliance on high-resolution imagery limits the cost-effective global application of the works introduced in the literature. To resolve this, the present work proposes a novel method for methane source classification based on open-source multi-spectral satellite imagery of Sentinel-1 and 2. The work utilizes deep dual-scale convolutions with scaled dot product self-attention calculated across the 15 composite bands of Sentinel-1 and 2 data. The incorporation of non-RGB bands along with the RGB bands further enables the model to learn the spectral differences essential for the classification. The experimental results witness the superior performance of the developed method against other considered state-of-the-art methods.</p></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"181 \",\"pages\":\"Article 106178\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815224002391\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224002391","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
An explainable MHSA enabled deep architecture with dual-scale convolutions for methane source classification using remote sensing
Methane is the second most abundant greenhouse gas after carbon dioxide. Anthropogenic sources are the dominant emitters of methane. The poor spatial resolution of satellite imagery, high interclass similarity, the multi-scalar nature of features, and the dominance of background limit the performance of the previous approaches. Further, the reliance on high-resolution imagery limits the cost-effective global application of the works introduced in the literature. To resolve this, the present work proposes a novel method for methane source classification based on open-source multi-spectral satellite imagery of Sentinel-1 and 2. The work utilizes deep dual-scale convolutions with scaled dot product self-attention calculated across the 15 composite bands of Sentinel-1 and 2 data. The incorporation of non-RGB bands along with the RGB bands further enables the model to learn the spectral differences essential for the classification. The experimental results witness the superior performance of the developed method against other considered state-of-the-art methods.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.